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an observer whose belief is represented by Eq. (2). These
quantities can be changed by varying psychophysical task
parameters (Glaze et al. 2015





















insights into how and why organisms fail to perform
optimally (Geisler 2003). Investigating optimal models
and their approximations requires simulations across large
parameter spaces; these necessarily require rapid simulation
techniques to obtain refined results. Efficient computational
methods are therefore essential for the analysis of evidence
accumulation models, and their application to experiment
design.

Using differential CK equations to describe ensembles
of decision model realizations speeds up computation
and describes the time-dependent probability density
of an observer’s belief. Thus, traditional metrics of
performance (e.g., accuracy) and other less common model
comparison metrics (KL divergence) can be computed
rapidly. This opens new avenues for comparing normative
and heuristic decision making models, and for determining
task parameter ranges to distinguish models. There is
also hope that in high throughput experiments, sufficient
data could be collected to specify subject confidence
distributions, which could be fit, or compared to model
predictions (Piet et al. 2019).

Doubly stochastic and jump-diffusion models appear
in a number of other contexts in neuroscience and
beyond (Hanson 2007; Horsthemke and Lefever 2006).
For instance, dichotomous and white noise have been
included in linear integrate and fire (LIF) models to model
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