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The need for such fast transforms and associated grids arises in many applications,
including problems of non-destructive evaluation such as x-ray tomography, diffraction
tomography, synthetic aperture radar and linearized inverse scattering; applications such as



Grids and transforms for band-limited functions in a disk 2061

transforms. We did not attempt to compare the speed of the pPFFT and that of our approach.
These algorithms have the same order of complexity and their speed may differ only by a
factor. Such a factor is difficult to ascertain conclusively, not only due to the details of
implementation, but also due to the differences in the required number of grid nodes.

The Fourier transform on an arbitrary grid, including the polar grid, may be evaluated
by using the USFFT (a point made in [15]). However, as a consequence of neglecting the
quadrature properties of the grid, the inversion of such a transform usually requires solving
an ill-conditioned linear system. In [15] and many other papers on applications of the USFFT
(see e.g. [2]), the authors use the conjugate gradient method to solve such a system since fast
direct solvers are not available. While well justified in many applications, we note that such
an approach produces only a nominally fast algorithm since the number of iterations of the
conjugate gradient method (controlled by the condition number of the linear system) may be
significant. Even if the condition number is reasonable, an iterative approach inflicts a penalty
in performance.

We also mention [22] which provides a numerical method for computing Slepian functions
for the disk to disk mapping (and the corresponding quadratures), following the analytic
construction in [23] and the approach in [27]. The resulting grids are close, but not identical
to the nearly optimal grids developed in this paper. It is important to note that the spectrum
of the space-limiting and band-limiting operator for the disk to disk mapping in [22, 23] is
substantially different from that of this paper which we further explain in remark 5.3.

We start the paper by considering the eigenvalue problem for the space-limiting and
band-limiting operator defined for functions concentrated in a square in the spatial domain
and in a disk in the Fourier domain. In section 3, we develop near optimal Fourier grids to
accurately approximate the kernel of such an operator. Given these grids, we introduce the
discrete forward and adjoint transforms in section 4 and consider their inversion in section 5.
In section 6, we present several examples of using these transforms. In section 7, we turn our
attention to another type of Fourier grids generated by rotating circles. We show how to use
the trigonometric interpolation along these rotating circles to compute values of the function
on the nearly optimal grids introduced in section 3, thus making it possible to use grids on
rotating circles for inversion. We remark on applications and extensions of our results in
section 8.

2. Preliminary considerations
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In this section, we construct such a Slepian operator by band-limiting functions to a disk
and space-limiting them to a square. The choice of a disk and a square is suggested by
typical applications. A disk in the Fourier domain is a natural choice for isotropic treatment
of directions. Choosing a square in space is relevant in many contexts as well. It turns out,
however, that these choices also lead to useful spectral properties of the corresponding Slepian
operator, not obtainable in the original construction in [23] (see also [22]).

For a band-limited function f with Fourier transform f supported in the disk

DZC:{%lsPZ):pf+p§<26}s

we have
1 r i(, 1x1%) 2x2
100=fwxd = g [ Tpap 2@ 0g g0 ®

We choose the disk of radius 2c¢ since, in what follows, we will consider the square
B = [—3,3] x [~3. 1] instead of the ‘traditional’ square [—1, 1] x [—1,1]. With this
choice, the function f in (1) has bandlimit parameter 2¢ and, thus, bandwidth W = ¢/7 . The
bandwidth W appears in discrete transforms and is used in the engineering literature.

We denote by L?(B) and L?(D,.) the spaces of square integrable functions with the inner
products

f.&p= fo(X)E(X) dx
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where x  2B. Following [23-26], we are interested in finding the eigenvalues and the
eigenfunctions of Q... We consider the eigenvalue problem

WV, 2(y) = / Koy — 20, 20(2) dz, @)
B

wherey,z B,y =0,1,2,...and 1 > %o > %3 > ¥ > ---. We briefly discuss the
spectral properties of the operator Q. in appendix A.1. For brevity of notation, we drop the
dependence of the eigenfunctions on ¢ and writev, 5. =¥, . The eigenfunctions of Q,. are
real valued, and we normalize them so that

1/2
voo=([more) =1 ®)

The operator Q.. plays a key role in the construction of Fourier grids (see section 3).

Next we consider two discrete versions of the eigenproblem (7), derived by equally or
unequally spaced discretization of the spatial domain. The former discretization is intended
for band-limited functions periodic in B
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where vectors f,, and g,, are function values on the grid x*. We now define analogues of (4)
and (5) for this unequally spaced case:
Fwygc . (CN"Z’

2
0 LD,ZC’

N1 (22)

Fol®) = Foaclful® = Y @ o f (57,) €720,

. n=0

where (Cf;’5 is considered with the inner product (21). Here, L%,zc is the space of square
integrable functions in the unit disk with the inner product induced by (3) rescaled to the unit
disk.

The adjoint transform is given by

2
2 ~ C ~ i2cp-%®
Fw,Zc : LZD,ZC - ng’ Fw,Zc[g’} n :_”_2 L g(p) e|2 P%" dp, (23)
where the grid %“, and the weights »®, are given by (19) and (20) respectively. We then
consider O, 2c = F,, 5. Fo 2,
2 1 <
Qu),Zc . (CCI‘Y“Z) - CQ/“Z)’ Qw,Zc[fw'} n :-:‘_2/ fa)(p) eIZCp.X " dp,
D
where
—_ r!‘ - 7“ 1’7 - 1’7
(Qw,Zc; o _KZC(, 2 z s 2 )w n- (24)
In order to find the eigenvectors of Q,, 2., we first consider the symmetric eigenvalue problem
N,—1
o — V. o op— e \V »
‘““Jff]'{n: Z (I)I‘IKZC(' 2'»’12’1) wn‘f]’{ n> (25)
m  n=0

. N,—1 .
where the real eigenvectors 5 = {4,; " n} ' —o are orthonormal with respect to the standard

inner product. The problem in (25) uses the matrix representation of the operator Q. ». with
respect to the inner product (21). We then define vectors

1 N,—1
o= ) e

@ n n=0
which now solve the eigenvalue problem
Qoo " = WV . 27)

We normalize the eigenvectorsy  with respect to the inner product (21),

Ve, =a . (28)
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bandlimit ¢ have been selected and serve the purpose of providing an approximation to the
original problem (7) with accuracy no worse than e,,.

We now turn to the discretization of the Fourier representation of the kernel K.
maintaining accuracy at a threshold ¢. We note that for the problem (27), it is natural to
consider ¢ > ¢,,.

3. Discretization of the kernel

In this section, we construct Fourier grids that provide accurate quadratures for exponential
functions (with an appropriate measure) in the disk D. One of our goals is to define and invert the
discrete transforms on the linear span of eigenvectors corresponding to significant eigenvalues
in (16) and (27). For this reason, we need a Fourier grid to accurately approximate the kernel
of the space-limiting and band-limiting operator Q.. introduced in the previous section.

Toward this end, we discretize the integral representation (6) of the real-valued kernel
Ky.. Using polar coordinates in (6) Withp 1 = 2cpCcoS #p2 = 2cp sin @ and q, 1(}, ) =
4¢?pdpd 4 we write the kernel as

C2 2 1l )
KZC(X) :7_2 f f eIZCD(X1 COs gtxz Sin ) 2 TDU(DZ] o. I'T .
0 0

T o(e)y n.
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Proposition 4.2. For ¢ in proposition 3.1, we have
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for vectors f (CQJ’S. Using (24), (54) and proposition 3.1, we interpret the matrix A as
A = EW, where all entries ¢ ,» , of E are less than ¢ and W is the diagonal matrix with
positive entries w ,. Thus, we have

2

<e ,i0 TD5(nequality)(m226 ()Tj691 699.5

| EWS, f ol = ZZ& i oan@ nwn;n

T prr n

D o uf
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the required precision) the function is smooth and periodic in the square B. This is similar
to the requirements on a function for using the DFT to approximate its Fourier transform.
In this case, we require the function to be approximately periodic and sampled with at least
the Nyquist rate. These conditions assure that trigonometric interpolation may be performed
without the artifact of Gibbs phenomenon. Since most signals are not periodic, they are
periodized by applying a window; an extensive literature is devoted to constructing algorithms
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(if) Given the projection coefficients o and the eigenvalues %, we form

d= Y ¢

7 J decay
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well localized in square B and is oversampled so that its Fourier transform is well localized in
D,.. We note that this function projects on the eigenvectors of (16) with the eigenvalues close
to 1.

6.2. Fourier transform of smooth, non-periodic functions

Although the transform G, ». may appear similar to G., it is quite different in that it allows us

to work with smooth, non-periodic functions in the square B. Since the Fourier coefficients of

such functions decay slowly, we use the analysis introduced by Slepian et al [23—-26] and the

transforms in (52) and (53) providing a discrete version for such an approach. The following

example uses the approach described in section 5 and shows that we can work with smooth,

non-periodic functions, something that is not directly possible by using the ordinary DFT.
We consider a function

pilhxitbhx) (x1,x2) B

fox) = {0 otherwise ©3)

with 4 =1k , & = 3r and its Fourier transform

f(&, &) == 2/
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If L is even, the grid points are located on concentric circles with signed distances given
by

'
r~.=cos<-yz), $=0,1,...,L—1, (76)

which (with the exception of ry = 1) are zeros of the Chebyshev polynomial of the second
kind U;—1(x) = 0. Counting the number of grid points, we have L /2 concentric circles each
containing L grid points and a single point at the origin, for a total of L2 /2 + 1 grid points. We
note that the (almost) factor of two reduction of the number of points is due to the removal of
double coverage in our description in (73); see figure 7.

We observe that using even L allows us to construct embedded grids of various resolutions
as illustrated in figure 9. In this case, it is proper to consider such grids in space (see
section 8) rather thaD0 Tc[469g15.6(eur)ir
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parameter, in addition to integrating over the two unit spheres [10]. We note that such
generalizations may also serve as a starting point for useful discretizations.

* Nonlinear inversion algorithms for the Fourier transform that rely on the structure of the
spectrum (see figure 1) are feasible within our overall approach and may provide more
accurate results.
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Appendix A

A.1. Spectral properties of the operator
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To give the reader a general idea of the speed, we note that the penalty factor (as compared
to the FFT) indimension 1 is roughly 2.5—8 and in dimension 2 is between 6 and 30 depending
on accuracy requirements, type of the transform and implementation. There is an absolute
lower limit on the penalty factor since all algorithms of this type use the FFT with oversampled
data as a step of the computation. The oversampling factor is typically 4 (or 2 for the special
cases) since these are more convenient factors to be used in conjunction with the FFT. Thus,
the ultimate limit in performance has a penalty factor equal to the oversampling factor in
dimension d = 1 and its square in dimension d = 2. We note that for low accuracies these
oversampling factors can be made smaller and, thus, lead to faster algorithms than indicated
here. We also note that except for separating the initialization step, we did not so far address
a possible acceleration of the USFFT algorithms due to the specific grids employed in this

paper.

A.3. Proof of theorem 5.1.

For brevity of notation, we drop the matrices dependence on ¢ and write F,, = F, . and
Gw = Gw,2c-
We first rewrite (59) as

frecon = GwGw[f —d]+d
and obtain
f—frecon = (I = G, G,)[f —d]. (A.1)

Let us estimate
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Using (A.4) for (A.3) yields
«C,

w b
uj

’<fdecay - d,U/]w>w} <
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