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The need for such fast transforms and associated grids arises in many applications,
including problems of non-destructive evaluation such as x-ray tomography, diffraction
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transforms. We did not attempt to compare the speed of the pPFFT and that of our approach.
These algorithms have the same order of complexity and their speed may differ only by a
factor. Such a factor is difficult to ascertain conclusively, not only due to the details of
implementation, but also due to the differences in the required number of grid nodes.

The Fourier transform on an arbitrary grid, including the polar grid, may be evaluated
by using the USFFT (a point made in [15]). However, as a consequence of neglecting the
quadrature properties of the grid, the inversion of such a transform usually requires solving
an ill-conditioned linear system. In [15] and many other papers on applications of the USFFT
(see e.g. [2]), the authors use the conjugate gradient method to solve such a system since fast
direct solvers are not available. While well justified in many applications, we note that such
an approach produces only a nominally fast algorithm since the number of iterations of the
conjugate gradient method (controlled by the condition number of the linear system) may be
significant. Even if the condition number is reasonable, an iterative approach inflicts a penalty
in performance.

We also mention [22] which provides a numerical method for computing Slepian functions
for the disk to disk mapping (and the corresponding quadratures), following the analytic
construction in [23] and the approach in [27]. The resulting grids are close, but not identical
to the nearly optimal grids developed in this paper. It is important to note that the spectrum
of the space-limiting and band-limiting operator for the disk to disk mapping in [22, 23] is
substantially different from that of this paper which we further explain in remark 5.3.

We start the paper by considering the eigenvalue problem for the space-limiting and
band-limiting operator defined for functions concentrated in a square in the spatial domain
and in a disk in the Fourier domain. In section 3, we develop near optimal Fourier grids to
accurately approximate the kernel of such an operator. Given these grids, we introduce the
discrete forward and adjoint transforms in section 4 and consider their inversion in section 5.
In section 6, we present several examples of using these transforms. In section 7, we turn our
attention to another type of Fourier grids generated by rotating circles. We show how to use
the trigonometric interpolation along these rotating circles to compute values of the function
on the nearly optimal grids introduced in section 3, thus making it possible to use grids on
rotating circles for inversion. We remark on applications and extensions of our results in
section 8.

2. Preliminary considerations
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In this section, we construct such a Slepian operator by band-limiting functions to a disk
and space-limiting them to a square. The choice of a disk and a square is suggested by
typical applications. A disk in the Fourier domain is a natural choice for isotropic treatment
of directions. Choosing a square in space is relevant in many contexts as well. It turns out,
however, that these choices also lead to useful spectral properties of the corresponding Slepian
operator, not obtainable in the original construction in [23] (see also [22]).

For a band-limited function f with Fourier transform f̂ supported in the disk

D2c =
{
(p1, p2) :

√
p2

1 + p2
2 � 2c

}
,

we have

f (x) = f (x1, x2) = 1

(2π)2

∫
D2c

f̂ (p1, p2) ei(p1x1+p2x2) dp1 dp2. (1)

We choose the disk of radius 2c since, in what follows, we will consider the square
B = [− 1

2 , 1
2

] × [− 1
2 , 1

2

]
instead of the ‘traditional’ square [−1, 1] × [−1, 1]. With this

choice, the function f in (1) has bandlimit parameter 2c and, thus, bandwidth W = c/π . The
bandwidth W appears in discrete transforms and is used in the engineering literature.

We denote by L2(B) and L2(D2c) the spaces of square integrable functions with the inner
products

〈f, g〉B =
∫

B

f (x)ḡ(x) dx
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where x ∈ 2B. Following [23–26], we are interested in finding the eigenvalues and the
eigenfunctions of Q2c. We consider the eigenvalue problem

µjψj,2c(y) =
∫

B

K2c(y − z)ψj,2c(z) dz, (7)

where y, z ∈ B, j = 0, 1, 2, . . . and 1 > µ0 > µ1 � µ2 � · · ·. We briefly discuss the
spectral properties of the operator Q2c in appendix A.1. For brevity of notation, we drop the
dependence of the eigenfunctions on c and write ψj,2c = ψj . The eigenfunctions of Q2c are
real valued, and we normalize them so that

‖ψj‖B =
(∫

B

|ψj(z)|2 dz
)1/2

= 1. (8)

The operator Q2c plays a key role in the construction of Fourier grids (see section 3).
Next we consider two discrete versions of the eigenproblem (7), derived by equally or

unequally spaced discretization of the spatial domain. The former discretization is intended
for band-limited functions periodic in B
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where vectors fω and gω are function values on the grid xω. We now define analogues of (4)
and (5) for this unequally spaced case:

Fω,2c : C
N2

ω
ω → L2

D,2c,
(22)

f̂ ω(p) = Fω,2c[fω](p) =
Nω−1∑
m,n=0

ωmnf
(
xω

mn

)
e−i2cp·xω

mn ,

where C
N2

ω
ω is considered with the inner product (21). Here, L2

D,2c is the space of square
integrable functions in the unit disk with the inner product induced by (3) rescaled to the unit
disk.

The adjoint transform is given by

F ∗
ω,2c : L2

D,2c → C
N2

ω
ω , F ∗

ω,2c[ĝ]mn = c2

π2

∫
D

ĝ(p) ei2cp·xω
mn dp, (23)

where the grid xω
mn and the weights ωω

mn are given by (19) and (20) respectively. We then
consider Qω,2c = F ∗

ω,2cFω,2c,

Qω,2c : C
N2

ω
ω → C

N2
ω

ω , Qω,2c[fω]mn = c2

π2

∫
D

f̂ ω(p) ei2cp·xω
mn dp,

where (
Qω,2c

)
mn,m′n′ = K2c

(
θm − θm′

2
,
θn − θn′

2

)
ωm′n′ . (24)

In order to find the eigenvectors of Qω,2c, we first consider the symmetric eigenvalue problem

µω
j qω

j,mn =
Nω−1∑

m′,n′=0

√
ωmnK2c

(
θm − θm′

2
,
θn − θn′

2

) √
ωm′n′qω

j,m′n′ , (25)

where the real eigenvectors qω
j = {

qω
j,mn

}Nω−1
m,n=0 are orthonormal with respect to the standard

inner product. The problem in (25) uses the matrix representation of the operator Qω,2c with
respect to the inner product (21). We then define vectors

ψω
j =

{
1√
ωmn

qω
j,mn

}Nω−1

m,n=0

, (26)

which now solve the eigenvalue problem

Qω,2cψ
ω
j = µω

j ψω
j . (27)

We normalize the eigenvectors ψω
j with respect to the inner product (21),〈

ψω
j , ψω

j ′
〉
ω

= δjj ′ . (28)
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bandlimit c have been selected and serve the purpose of providing an approximation to the
original problem (7) with accuracy no worse than εω.

We now turn to the discretization of the Fourier representation of the kernel K2c

maintaining accuracy at a threshold ε. We note that for the problem (27), it is natural to
consider ε � εω.

3. Discretization of the kernel

In this section, we construct Fourier grids that provide accurate quadratures for exponential
functions (with an appropriate measure) in the disk D. One of our goals is to define and invert the
discrete transforms on the linear span of eigenvectors corresponding to significant eigenvalues
in (16) and (27). For this reason, we need a Fourier grid to accurately approximate the kernel
of the space-limiting and band-limiting operator Q2c introduced in the previous section.

Toward this end, we discretize the integral representation (6) of the real-valued kernel
K2c. Using polar coordinates in (6) with p1 = 2cρ cos θ, p2 = 2cρ sin θ , and dp1 dp2 =
4c2ρ dρ dθ , we write the kernel as

K2c(x) = c2

π2

∫ 2π

0

∫ 1

0
ei2cρ(x1 cos θ+x2 sin θ)8379 TDσ(0)Tjσ9.9626 0 0 9.9626 245.646 533.859 Tmσ(e)uOn.12

2∫2π

06∫
1e

i2cρ(x

1

cos θ+x2 sinθ)+‖ � . c � ∈(‖)Tj∼/F1 1 Tf∼90706 0 TD∼(2)Tj∼/F5 1 Tf∼0.4996 0 T(B)uOn.1
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for vectors f ∈ C
N2

ω
ω . Using (24), (54) and proposition 3.1, we interpret the matrix A as

A = EW , where all entries emn,m′n′ of E are less than ε and W is the diagonal matrix with
positive entries ωmn. Thus, we have

|〈EWf, f 〉ω| =
∣∣∣∣∣
∑
mn

∑
m′n′

emn,m′n′ωm′n′fm′n′ωmnf̄mn

∣∣∣∣∣ � ε

∣∣∣∣∣
∑
mn

ωmnfmn

∣∣∣∣∣
2

,i0 TD5(nequality)
(m226 
(�)Tj691 699.56 0 0 TD
/F1�)Tj
T*
(�)Tj
T*
(�)Tj
T*
(�)Tj
0.3252 1.5999 TD
(�*
(�)6007T*
(�)Tj
T*1 Tf
6.960080 0 6.9738 384.066 673.3141 Tm
-0.0002 T1e)-37 Tf.92666 0 0 9.9626 397.395 684.771 Tm
0 Tc
(�)Tj[(.)74.9832.129738 403.92 683.1.991 699.5131 Tm
(2)Tj
/F5181.m
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the required precision) the function is smooth and periodic in the square B. This is similar
to the requirements on a function for using the DFT to approximate its Fourier transform.
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(ii) Given the projection coefficients αj and the eigenvalues µω
j , we form

d =
∑

j∈J decay

α

ωd
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well localized in square B and is oversampled so that its Fourier transform is well localized in
D2c. We note that this function projects on the eigenvectors of (16) with the eigenvalues close
to 1.

6.2. Fourier transform of smooth, non-periodic functions

Although the transform Gω,2c may appear similar to Ge, it is quite different in that it allows us
to work with smooth, non-periodic functions in the square B. Since the Fourier coefficients of
such functions decay slowly, we use the analysis introduced by Slepian et al [23–26] and the
transforms in (52) and (53) providing a discrete version for such an approach. The following
example uses the approach described in section 5 and shows that we can work with smooth,
non-periodic functions, something that is not directly possible by using the ordinary DFT.

We consider a function

f (x1, x2) =
{

ei(k1x1+k2x2)

0
(x1, x2) ∈ B

otherwise
(63)

with k1 = 11π, k2 = 3π and its Fourier transform

f̂ (ξ1, ξ2) == 2/

, x 1

= 1

=
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If L is even, the grid points are located on concentric circles with signed distances given
by

rk = cos

(
π

k

L

)
, k = 0, 1, . . . , L − 1, (76)

which (with the exception of r0 = 1) are zeros of the Chebyshev polynomial of the second
kind UL−1(x) = 0. Counting the number of grid points, we have L/2 concentric circles each
containing L grid points and a single point at the origin, for a total of L2/2 + 1 grid points. We
note that the (almost) factor of two reduction of the number of points is due to the removal of
double coverage in our description in (73); see figure 7.

We observe that using even L allows us to construct embedded grids of various resolutions
as illustrated in figure 9. In this case, it is proper to consider such grids in space (see
section 8) rather thaD
0 Tc
[46g15.6(eur)ir
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parameter, in addition to integrating over the two unit spheres [10]. We note that such
generalizations may also serve as a starting point for useful discretizations.

• Nonlinear inversion algorithms for the Fourier transform that rely on the structure of the
spectrum (see figure 1) are feasible within our overall approach and may provide more
accurate results.
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Appendix A

A.1. Spectral properties of the operator
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To give the reader a general idea of the speed, we note that the penalty factor (as compared
to the FFT) in dimension 1 is roughly 2.5−8 and in dimension 2 is between 6 and 30 depending
on accuracy requirements, type of the transform and implementation. There is an absolute
lower limit on the penalty factor since all algorithms of this type use the FFT with oversampled
data as a step of the computation. The oversampling factor is typically 4 (or 2 for the special
cases) since these are more convenient factors to be used in conjunction with the FFT. Thus,
the ultimate limit in performance has a penalty factor equal to the oversampling factor in
dimension d = 1 and its square in dimension d = 2. We note that for low accuracies these
oversampling factors can be made smaller and, thus, lead to faster algorithms than indicated
here. We also note that except for separating the initialization step, we did not so far address
a possible acceleration of the USFFT algorithms due to the specific grids employed in this
paper.

A.3. Proof of theorem 5.1.

For brevity of notation, we drop the matrices dependence on c and write Fω = Fω,2c and
Gω = Gω,2c.

We first rewrite (59) as

frecon = G∗
ωGω[f − d] + d

and obtain

f − frecon = (I − G∗
ωGω)[f − d]. (A.1)

Let us estimate
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Using (A.4) for (A.3) yields∣∣〈fdecay − d, ψω
j

〉
ω

∣∣ � εCω‖f‖ω

µω
j

,
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