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We consider the problem of reconstructing a compactly supported function with singu-
larities either from values of its Fourier transform available only in a bounded interval
or from a limited number of its Fourier coefficients. Our results are based on several ob-
servations and algorithms in [G. Beylkin, L. Monzón, On approximation of functions by
exponential sums, Appl. Comput. Harmon. Anal. 19 (1) (2005) 17–48]. We avoid both the
Gibbs phenomenon and the use of windows or filtering by constructing approximations
to the available Fourier data via a short sum of decaying exponentials. Using these expo-
nentials, we extrapolate the Fourier data to the whole real line and, on taking the inverse
Fourier transform, obtain an efficient rational representation in the spatial domain. An im-
portant feature of this rational representation is that the positions of its poles indicate
location of singularities of the function. We consider these representations in the absence
of noise and discuss the impact of adding white noise to the Fourier data. We also compare
our results with those obtained by other techniques. As an example of application, we con-
sider our approach in the context of the kernel polynomial method for estimating density
of states (eigenvalues) of Hermitian operators. We briefly consider the related problem of
approximation by rational functions and provide numerical examples using our approach.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

We consider the problem of reconstructing a compactly supported function with singularities from values of its Fourier
transform available only in a bounded interval, or from a limited number of its Fourier coefficients. The singularities that
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As a representative example, let us consider a compactly supported real-valued function with Fourier transform of the
form

f̂ (ξ) =
M∑

m=1

am|ξ |−αmeiφmξ , (2)

where am ∈ C
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in
optimal approximation by decaying exponentials to approximate f̂ in the form (3). We note that trying to recover f̂ in
the form (2) leads to a complicated system of nonlinear equations [7].

• Given the samples f̂ (a n
2N ), n = 0, 1, . . . , 2N , and assuming that they provide a sufficient oversampling of the function

f̂ (ξ) in [−a,a], the algorithm in [5] allows us to construct an approximation with a near optimal (minimal) number ofin
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where ε′ is very close to ε provided that the function h is appropriately sampled in (6) to justify local interpolation.
The steps to achieve the approximation (6) are as follows:

• Build the N + 1 × N + 1 Hankel matrix Hkl = hk+l using the samples hn = h(a n
2N ), 0 � n � 2N .

• Find a vector u = (u0, . . . ,uN ), satisfying Hu = σ u, with positive σ close to the target accuracy ε . The existence of such
vector u follows from Tagaki’s factorization (see [5, p. 22]); the singular value decomposition yields σ as a singular value
and u as a singular vector of H. We label the first M + 1 singular values of H in decreasing order σ0 � σ1 � · · · � σM ,
where σM is chosen so that σM/σ0 ≈ ε . Typically, singular values decay rapidly and, thus, M = O(log ε−1) and M � N .

• Compute roots γm of the polynomial u(z) = ∑N
n=0 unzn whose coefficients are the entries of the singular vector u

computed in the previous step. The weights wm are obtained solving the least-squares Vandermonde system

N∑
m=1

wmγ n
m = h

(
a

n

2N

)
, 0 � n � 2N.
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Fig. 4. Comparison of reconstructions with errors displayed using log10 scale on the vertical axis. The horizontal lines indicate the level of 2 · 10−5 achieved
by “flat” window (second from the top). The rational representation with 27 terms is obtained via (5).
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Fig. 5. The top figure displays the piece-wise polynomial function in (8) and, the bottom one, the locations of the 27 poles of its rational representation
in (5). We have aligned the horizontal scale of these two figures to illustrate that the positions of the poles in the complex plane arrange themselves
in branches as to indicate the location of function singularities (well separated in this case). As poles approach the real axis, their arrangement also
corresponds to the type of singularity at that location.

(a) (b)

Fig. 6. The first 28 singular values of Hankel matrix with entries in (9) without noise (a) and with Gaussian noise added (b). The singular values are plotted
using log10 scale along the verticac
[(c
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Fig. 7. Comparison of reconstructions in the presence of Gaussian noise with standard deviation 1
2 · 10−3. Absolute errors are displayed on a log10 scale

along the vertical axis and the horizontal lines indicate the error level 1.6 · 10−3. We note that the error using the Kaiser window is already at this level
for the noiseless case (see Fig. 4) and is not displayed here for that reason.

where we use Re
∑M

m=1 wm instead of
∑M

m=1 wm since it approximates the real value f̂0 = ∫ 1
0 f (t)dt .

Again the function g in (10) is defined by 2M poles and corresponding residues. Let us consider the rational function g̃(z)
such that g̃(e−2π ix) = g(x). The poles of g̃ appear in pairs, zm and 1/zm, zm = e−ηm with residues wme−ηm and −wmeηm

and zero constant term. In illustrating rational representations of the form in (10), we display poles of g(x) to interpret the
representation on [0, 1], i.e., we display ηm/2π i rather than the poles zm of g̃ .

4.1. Reconstruction of compactly supported functions considered as periodic functions

For f in (8), let us consider f (5x) as a periodic function in [0, 1] and use as input its Fourier coefficients 1
5 f̂ (n/5),

n = 0, 1, . . . , 2N , instead of values of the Fourier transform (9) in Section 3. We reconstruct f using 63 and 127 of its
Fourier coefficients (i.e. N = 31 and N =
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Fig. 8. Reconstruction errors (using log10 scale on vertical axis) for the periodic function f (5x) on [0, 1], where f is given in (8). The upper (lower) curve
shows the error using as input 63 (127) of its Fourier coefficients.

where we rescaled the interval to [0, 1] to be consistent with our notation. We apply our algorithm to the first 63 and
127 Fourier coefficients of f and display the results in Fig. 9. In the case of 63 coefficients, we select σ15 ≈ 6.2928 · 10−9

leading to 15 terms in the reconstruction and accuracy away from singularities of the function of about 8 digits. For 127
coefficients, we chose σ27 ≈ 3.24298 · 10−16 leading to 27 terms and accuracy away from singularities of about 15 digits.
As an improvement over parametric techniques of [10,17,18], we note that, away from singularities of the function, our
approach achieves the desirable features of uniform L∞-type approximation.

5. On rational approximation of functions

So far we constructed our rational representations assuming that we have knowledge of either the values of the Fourier
transform of a function on some interval or, alternatively, a limited number of its Fourier coefficients. In this section we
consider a related approximation problem, where we control the size of the Fourier interval or the number of the Fourier
coefficients. Specifically, given a compactly supported function with integrable singularities, we are interested in constructing
a rational approximation and quantifying its properties given its Fourier transform in a bandlimited interval. A theoretical
foundation of our approach lies in interpreting results in [5] as an extension of the theory developed by Krein et al. in [1–3].
We plan to address this problem at length elsewhere but, in this section, we present some observations for the purpose of
illustration.

Let us show that by an appropriate selection of bandlimit, our approach yields an accurate rational approximation away
from singularities. Let f be a real, compactly supported, bounded function. We assume that
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Table 1
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5·10−8
Fig. 10. Cubic B-spline considered in the interval [−3, 3] (top). Locations of the 26 poles (in the lower half-plane) of its rational approximation (middle).
Log-error of its reconstruction over the interval [−3, 3] (bottom). We aligned the figures to illustrate the arrangement of the poles in the complex plane vs.
singularities of the function being approximated.

where

β̂(ξ) = 3

2

(
sin πξ

πξ

)4

,

we approximate β(x) by a rational function

g(x) = Re

(
M∑

m=1

rm
x − xm

)
, (19)

where, in this example, M = 26 and poles xm and residues rm are given in Table 1. The positions of the poles and the error
of approximation are shown in Fig. 10. In this example, samples hn were approximated with maximum absolute error ≈
2.5 · 10−8 leading to an approximation of β̂ anywhere in the interval [0, 25] with maximum absolute error2
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Fig. 11. The function 2√
1−x2

1[−1,1](x)
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we not only obtain an accurate approximation of D(x) but also an a posteriori estimate of the noise level that we read off
the change in the rate of decay of the singular values of the corresponding Hankel matrix.

7. Conclusions

The nonlinear inversion of the bandlimited Fourier transform of this paper avoids Gibbs phenomenon without resorting
to traditional windowing or more sophisticated filtering techniques. We show how to apply our method when the measured
or computed data are either values of the Fourier transform or coefficients of the Fourier series. The nonlinear approximation
of the Fourier data by a sum of exponentials is near optimal, i.e. requires a near minimal number of terms, and, hence,
yields an efficient rational representation. The poles of the rational representation arrange themselves in patterns indicating
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