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Abstract

Solutions to challenging inference problems are often subject to a fundamental trade-off

between: 1) bias (being systematically wrong) that is minimized with complex inference

strategies, and 2) variance (being oversensitive to uncertain observations) that is minimized

with simple inference strategies. However, this trade-off is based on the assumption that the

strategies being considered are optimal for their given complexity and thus has unclear rele-

vance to forms of inference based on suboptimal strategies. We examined inference prob-

lems
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preregistered, online study. The participants tended to use suboptimal decision strategies

that reflected an inversion of the classic bias-variance trade-off: some used complex,

nearly normative strategies with mistuned evidence weights that corresponded to rela-

tively high choice biases but lower choice variance, whereas others used simpler heuristic

strategies that corresponded to lower biases but higher variance. These relationships illus-

trate structure in suboptimality that can be used to identify systematic sources of human

errors.

Introduction

Understanding how the brain makes inferences about the world requires first understanding

the diversity of strategies individuals use to solve inference problems. One useful approach for

https://doi.org/10.1371/journal.pcbi.1010323


Bayesian strategies tended to have higher bias and lower variance, whereas subjects who
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S1 Text ªTask and Recruitmentº for additional details). The ratios of colored balls in each jar

were varied to create five blocks of trials and could be described by the proportion of balls of

one color, termed the ªrare-ballº color. The rare-ball color remained consistent throughout all

blocks. Blocks were

https://doi.org/10.1371/journal.pcbi.1010323.g002
https://doi.org/10.1371/journal.pcbi.1010323


were recruited only if they had a 95% or better
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from one of the jars, ξ1:n, where ξi = 1 (ξi = −1) denote an observation of a rare (common) ball

color. The ideal observer uses these observations to update the log likelihood ratio (belief),
zn ¼ log Pðh¼hþjx1:nÞ

Pðh¼h� jx1:nÞ
, between the probabilities that the sample came from a jar with a rare ball

frequency of h = h+ (high) or h = h− (low). We can write the belief as:

zn ¼
Xn

j¼1

log
PðxjjhþÞ
Pðxjjh� Þ

¼

https://doi.org/10.1371/journal.pcbi.1010323.g004
https://doi.org/10.1371/journal.pcbi.1010323


and thus the magnitude of the belief increment is the same for either observation (|C(+1)| = |

C(−1)|). When the environment is asymmetric, h− < 1 − h+, and different ball colors corre-

spond to different evidence weights (|C(+ 1)| 6¼ |C(−1)|).

For n ball draws, we can compute the probability of the responses (choices) on a given trial,

r = h− and r =

https://doi.org/10.1371/journal.pcbi.1010323.g005
https://doi.org/10.1371/journal.pcbi.1010323


Conditioning on trial type, we can extend this analysis to obtain the minimum number of

rare balls, B, that must be observed to produce a high jar response, given a sample of size n.

This number is dependent on h+ and h−. When the jars are symmetric (h+ = 1 − h−), B = n/2.

In asymmetric cases, B< n/2 if h+ +

https://doi.org/10.1371/journal.pcbi.1010323


likely to be the source of a sample. Thus, fits using this model had two free parameters: a

https://doi.org/10.1371/journal.pcbi.1010323


Here LLRb is the true LLR of each observed set of balls as computed using the ideal observer

model. We fit the following parameters: 1) �, the lapse rate; 2) ϕ, the LLR value at which each

choice (high or low jar) is equally likely; and 3) �, the slope around the point ϕ. Bias was

defined as a non-zero value of ϕ, so that positive (negative) values correspond to biases towards

(away) from the low jar. Noise was defined as 1/|�|, so that shallower functions correspond to

higher noise.

Variance was defined as the weighted average of the absolute value of the residuals (mean

absolute error),

v ¼
1

x

Xx

i¼1

nijPðr ¼ hþÞb;i � rb;ij

where x is the number of LLR values for a block, ni is the number of trials at a given LLR value,

ρb,i is the logistic fit for a given block-LLR, and P(r = h+)b,i is the probability of a high jar

response from the observer for a given block-LLR. Larger values of v reflected more variance.

Our interpretation is based on the idea that noise is driven by either errors in the internal

representation of the LLR or post-decision choice variability, whereas variance reflects strate-

gies that are independent of the LLR. Based on the two model classes studied here (Bayesian

and Heuristic), we find that models that rely on the LLR (Bayesian models) and the subjects

best fit by them are fit with some noise but substantially less variance compared to models and

subjects that use a pattern-based approach that does not depend on the LLR (Heuristic mod-

els). While there is correlation between the two metrics, heuristic subjects show substantially

larger values for noise, which reflect the the poor logistic fits to these responses, and the con-

clusions of our analyses are comparable using either metric (see Supplementary Materials S5

Text ªNoise Versus Varianceº, S10 and S11 Figs, for more details).

Model fitting and comparison

Parameter fitting. We fit model parameters to data using Bayesian maximum-likelihood

estimation. We obtained the posteriors over the parameters by considering the vectors of

responses, r1:42, and observation samples, ξ1:42, across all 42 trials in a block (ξ

https://doi.org/10.1371/journal.pcbi.1010323


For models in which responses are independent across trials, we used the trial-wise response

probabilities to compute the posteriors given responses and samples in a block of trials,

pða; rjr1:42; ξ1:42Þ ¼
pða; rÞ

pðr1:42jξ1:42Þ

Y42

j¼1

pðrjja; r; ξjÞ:

The maximum of this posterior is the maximum likelihood estimate of the model parameters.

The interval of parameters containing at least 95% of the maximum likelihood estimate were

ite

https://doi.org/10.1371/journal.pcbi.1010323


computing the log likelihood ratio of the marginal likelihoods for any given pair of models,

logðBFÞ ¼ log
PðDjM2Þ

PðDjM1Þ
¼ log

PðM2jDÞPðM1Þ

PðM1jDÞPðM2Þ
:

Here D is the data from a block of trials (r1:42 and ξ1:42), andM1 andM2 are two models from

the list we described above. For example, te

https://doi.org/10.1371/journal.pcbi.1010323


The MI with the inclusion of
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Algorithmic complexity

As in [9], algorithmic complexity isisdescribedj
1.7mplexity

https://doi.org/10.1371/journal.pcbi.1010323
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asymmetric blocks in Fig 3A and 3B but focus on asymmetric blocks in the remainder of the

manuscript. Results from symmetric blocks can be found in Supplementary Materials S6 Text

ªSymmetric Resultsº, for comparison purposes (S12 Fig).

Overall, the subjects' accuracy tended to be above chance (bootstrapped means and 95%

confidence intervals were significantly above 0.5 for population data from each of the five

blocks) and in many cases was qualitatively similar to that of the ideal observer under matched

conditions (Fig 3A). Moreover, for asymmetric conditions both the ideal observer and the sub-

jects had choice asymmetries in favor of the low jar that deviated from the prior (Fig 3B, boot-

strapped means and 95% confidence intervals of low-jar responses significantly above 0.5).

However, the subjects also exhibited numerous suboptimalities in the asymmetric blocks.

These suboptimalities included errors attributable to bias and variance (Fig 3C and 3D) that

varied in magnitude across individual subjects but, in general, were larger than expected, given

the responses of the ideal observer (Fig 3E and 3F). Although bias varied in magnitude and

sign, most cases corresponded to an accentuation of choice asymmetry favoring the low jar.

Likewise, variance ranged from zero, corresponding to choices that exactly matched the best-

fitting logistic psychometric function, to near one, corresponding to choice patterns that devi-

ated substantially from the best-fitting psychometric function. These effects were amplified by

short sample lengths and task difficulty (see Supplementary Materials S4 Text ªChoice-Asym-

metry Analysesº and S9 Fig for details).

Formal model comparison

To relate these human behavioral patterns to particular inference strategies, we fit Bayesian-

based and heuristic models separately to each individual subject's responses per block. We

used Bayes factors to select the model that best matched each subject's responses on a given

block and further confirmed the fits by cross-validating the subject responses with the best-fit

model (S8 Fig). We then determined the bias-variance trends for each subject's best-fitting

model based on the subjects' psychometric fits (details on model selection and fitting can be

found in the Methods and Supplementary Materials S2 Text ªModel Fittingº and S3 Text ªSub-

ject Model Fittingº, S6 and S7 Figs).

Three models we used were Bayesian-based (Fig 4A). The first model assumed that the

observer makes decisions based on a noisy version of the log-likelihood, in which noise was a

normally distributed random variable with zero mean and a free parameter for variance, and ρ
was a free parameter representing the belief update in response to observing a rare ball (ªNoisy

Bayesianº). When ρ> 1, the model weighted a rare-ball observation more strongly than an

observation of a common ball. For the second model, we set ρ to the ideal observer's rare-ball

weight. Without noise, this version di
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assumption that the observer chooses the high jar with some probability whenever one or

more rare balls are observed (ªRare Ballº). This assumption is equivalent to fixing the thresh-

old parameter in the Variable Rare Ball model to 1. The third model described a simple guess-

ing

https://doi.org/10.1371/journal.pcbi.1010323


complexity. The first approach was purely data-driven, allowing us to avoid making assump-

tions about the specific, algorithmic form of each strategy. This approach was based on the

idea that efficient inference strategies solve an ªinformation bottleneckº problem [10], which is

closely related to lossy data compression and rate-distortion theory [11]; i.e., maximizing pre-

dictive accuracy for a fixed information budget. Specifically, for this approach we computed

two quantities using data separately from each subject and block: 1) strategic complexity, mea-

sured as the mutual information (MI) between the subject's observations (the samples of balls

observed on each trial) and their choices in the given block (Fig 6A), where larger values

implied that the known ball sample reduced uncertainty in a subject's choice; and 2) strategic

effectiveness, measured as the proximity of the subject's accuracy to the maximum achievable

accuracy given their strategic complexity (termed the ªoptimal accuracy boundº; for details see

the ªComplexity Analysesº S7 Text of the Supplemental Materials), where smaller values

implied that the strategy was being used more effectively to generate correct choices for a

given level of complexity. Note, high complexity does not necessarily imply high accuracy

since complex strategies could use irrelevant information and/or be ineffective, increasing the

distance to the maximal achievable accuracy.

In general, subjects who used more-complex strategies (i.e., those who used more informa-

tion from the current trial to make choices) were more accurate, withmod
(more-athe9388increasin9180j
37779 0 Td
(smost
(used)Tj
2.5
1.1735 0 Tdre-complex)Tj
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Fig 6. More complex but suboptimal human strategies exhibited more bias. a. Mutual information (MI) between the number of rare balls in a

sample (|ξ|), the sample length (n), and the response (r) for each subject a0l4to

https://doi.org/10.1371/journal.pcbi.1010323


the task. Based on our assignments, this metric showed a sample-length dependent scaling in

Bayesian complexity, but still confirmed that measures of complexity for the Bayesian models

were much larger than those of heuristics (Fig 6E). These model-based results support the idea

that the observed patterns of bias and variance are inherent to the relationship between the strat-

egies described by these models and not simply idiosyncrasies of the subjects' behavioral pat-

terns, with errors in more-complex Bayesian-like strategies leading to increased biases, but less-

complex strategies based on the pattern of observations leading to increased variance (details of

this analysis can be found in Supplementary Materials S7 Text ªComplexity Analysesº, S16 Fig).

Discussion

How do people's error trends depend on the inference strategies they use? We examined the

properties of errors made by human subjects performing a two-alternative forced-choice task

with asymmetric evidence [7, 16, 17]. The evidence took the form of two colors of balls drawn

from jars, such that one (ªrareº) color was drawn less often than the other. Similar to ideal

observers, most subjects exhibited a choice asymmetry favoring the option that produced

fewer rare balls. In addition, subjects fell into two categories depending on the type of strategy

that best described their responses. Subjects described by heuristic strategies, which were

based on less information and fewer algorithmic operations, displayed substantially more

choice variability but comparable choice asymmetry to the ideal observer. In contrast, subjects

described by more-complex, mistuned Bayesian strategies displayed minimal increases in

choice variability but much more bias than the ideal observer. These effects reflected the nature

of the suboptimalities introduced by each strategy type: the heuristic strategies we considered

did not take into account specific task features responsible for choice asymmetries and thus

tended to add variability, whereas the Bayesian-like strategies that we considered did attempt

to model those features explicitly but, when implemented suboptimally (mistuned) by the sub-

jects, tended to exacerbate asymmetries inherent in such decision rules.

Inversion of the bias-variance trade-off

These findings provide new insights into the generalizability of bias-variance trade-offs that

are well established in machine learning and related fields [2, 3] and can be used to account for

individual differences in human behavior under certain conditions [1, 4]. Bias-variance trade-

offs can be conceptualized in terms of fitting various functions that differ in complexity (e.g.,

polynomial order) to noisy data whose generative source is unknown. Typically, simpler (e.g.,

linear) models tend to have higher bias, because they miss higher-order (e.g., nonlinear) fea-

tures of the generative source, but lower variance, because their best-fitting parameters are rel-

atively stable across different data instances. In contrast, more complex (e.g., high-order

polynomial) models tend to have lower bias, because they can capture complex features of the

data, but higher variance, because the specific features they capture can differ across different

data instances.

Critically, this traditionalacross

https://doi.org/10.1371/journal.pcbi.1010323.g006
https://doi.org/10.1371/journal.pcbi.1010323


optimality. Specifically, we considered two broad classes of strategies that could result in sub-

optimalities either from the model used or a mistuning of the parameters. In the context of

asymmetric evidence, these suboptimalities introduced errors that could invert the bias-vari-

ance trade-off. However, this inversion only manifested when considering the relationship of

complexity across model classes in asymmetric contexts. In contrast, decreases in complexity

within a model class in asymmetric contexts produced increases in both bias and variance,

regardless of model class. Therefore, our results suggest that the inversion of the bias-variance

trade-off arises in particular situations, such as when suboptimal strategies are used in asym-

metric environments, and may

https://doi.org/10.1371/journal.pcbi.1010323


choice biases in tasks with symmetric evidence but asymmetries in expected choice frequencies

[30±33] or reward outcomes [32, 34±37]. Under those conditions, biases based on asymmetric

priors are common and, on average, tend to follow established, normative principles often for-

mulated in the context of Signal Detection Theory [30] and/or sequential analysis [38]. In our

study, subjects tended to either use inappropriate priors (e.g., subjects whose choices were best

matched by the Prior Bayesian model with a prior biased towards the low jar) or neglect the

symmetric prior altogether (e.g., subjects whose choices were best matched by heuristic mod-

els). These strategies could, in principle, reflect a relatively common form of recency bias that

can cause an initial belief shift in the direction of the previous response [31, 32, 34, 35, 39, 40],

and, more generally, is consistent with many previous findings of mistuned priors [41±45].

Alternatively, while our Prior Bayesian model described changes in choice asymmetry that

were attributed to biased priors without impacts to the ideal evidence weights, it is plausible

that the ideal observer model and its mistuned Bayesian variants could be implemented by a

competitive neural network model with plastic synapses that could represent the evidence

asymmetry of rare balls

https://doi.org/10.1371/journal.pcbi.1010323


observations and their responses [49]. Moreover, the presence and amplitude of rewards

shapes task attention [50], which could be reflected in strategy usage.

In this task, suboptimality took three forms: 1) underweighting rare balls; 2) biased priors

in favor of the low jar; and 3) applying heuristics, which occurred predominantly in harder

tasks. We hypothesize that underweighting may be the result of weighting biases in favor of

symmetric weights, rather than a mistuning relative to the ideal-observers weights, given that

subject's rare-ball parameters showed comparable values for both easy and hard asymmetric

blocks. Likewise, the mistuning of subjects' priors in favor of the low jar may reflect a recency

bias, in which previous low-jar responses encourage subjects to repeat their choice [51, 52].

Finally, the use of heuristic strategies in more complex tasks (e.ge
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S7 Text. Complexity analyses.

(DOCX)

S1 Fig. Example of the screen viewed by subjects on Amazon Mechanical Turk. The details

of the current set of jars were available to participants on every trial. A prompt at the bottom

of the screen indicated to the subject to select the jar from which the sample was drawn.

(TIF)

S2 Fig. Inattentive subjects. Accuracy for each subjects' interspersed control trials to test for

attentiveness (3 interspersed blocks of 12 trials). Inattentive subjects were defined as those

whose accuracy was 50% or lower on two or more interspersed control blocks (3 subjects iden-

tified, red lines). These subjects were excluded from all further analyses.

(TIF)

S3 Fig. Trial identification. Examples of the Bayesian parametric posteriors of the Noisy

Bayesian model with a flat prior over the noise variance 0� a� 1 and the rare-ball weight 0<

ρ� 24.16 (computed from jars with rare-ball probabilities 0.01� h±� 1). Posteriors are based

on synthetic responses from a Noisy Bayesian model whose
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assumes that ρ equals the ideal observer's rare-ball
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of rare balls that must be drawn (e.g., 1 up to 2) to trigger a ªhighº response, generating a saw-

tooth-shaped response fraction function of ball number. Right: The overall (correct and incor-

rect trials) low-jar response probability for the ideal observer shows a general decrease in

choice asymmetry as sample size increases. However, the effect is accompanied by the saw-

tooth structure depicted in the center panels.

(TIF)

S10 Fig. Noise variance comparison. Top: Estimated noise and variance from psychometric

functions fit to individual subject data (points). Noise and variance showed a significant corre-

lation in all blocks: Control (CT), Hard Asymmetric (HA), Hard Symmetric (HS), Easy Asym-

metric (EA), Easy Symmetric (ES) (Spearman's Correlation, p< 0.05). Center: Same data as in

the top row, but color coded by each subject's best-fit models for each block. In general, heuris-

tic subjects had the largest values of variance and noise. Triangles represent medians for each

model group. Filled triangles differ significantly from the Nearly Ideal subjects (two-sided Wil-

coxon rank-sum test, p< 0.05). 
2.6702 0 Td
(rank-sum)Trman's
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variance, consistent with general trends of better (less variable) performance associated with

more-complex strategies.

(TIF)

S14 Fig. Mutual information with previous response. Across-group bias-variance relation-

ships were robust to a measure of mutual information (MI) that took into account not just the

balls observed on the current trial (i.e., relevant information, as in Fig 6A)) but also the previ-

ous choice (i.e., irrelevant information), for the two asymmetric blocks (columns, as indi-

cated). a: Accuracy versus MI. The bound is the maximum accuracy attainable by the idea

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010323.s021
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010323.s022
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010323.s023
https://doi.org/10.1371/journal.pcbi.1010323


https://doi.org/10.1038/s41562-018-0297-4
https://doi.org/10.1037/0033-295X.112.3.610
https://doi.org/10.1146/annurev-psych-120709-145346
https://doi.org/10.1146/annurev-psych-120709-145346
https://doi.org/10.1016/j.neuron.2012.03.016
https://doi.org/10.1523/JNEUROSCI.3478-17.2018
https://doi.org/10.1523/JNEUROSCI.3478-17.2018
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1371/journal.pcbi.1010323


11. Berger T. Rate-distortion theory. Wiley Encyclopedia of Telecommunications. 2003;.

12. Bossaerts P, Murawski C. Computational Complexity and Human Decision-Making. Trends Cog Sci.

2017; 21. https://doi.org/10.1016/j.tics.2017.09.005

13. Bossaerts P, Yadav N, Murawski C. Uncertainty and computational complexity. Phil Trans Roy Soc

LondSeries B. 2019; 374. https://doi.org/10.1098/rstb.2018.0138

14. Kool W, Gershman SJ, Cushman FA. Planning Complexity Registers as a Cost in Metacontrol. J Cog

Neurosci. 2018; 30. https://doi.org/10.1162/jocn_a_01263

15. Balasubramanian V. Bayesian inference, and the geometry of the space of probability distributions. In:

in Advances in Minimum Description

https://doi.org/10.1016/j.tics.2017.09.005
https://doi.org/10.1098/rstb.2018.0138
https://doi.org/10.1162/jocn_a_01263
https://doi.org/10.1152/jn.1969.32.3.452
https://doi.org/10.1523/JNEUROSCI.10-09-03032.1990
https://doi.org/10.1017/S0140525X1900061X
https://doi.org/10.1017/S0140525X1900061X
https://doi.org/10.1017/S0140525X18000936
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.3389/fnins.2014.00150
https://doi.org/10.1016/S1364-6613(00)01567-9
https://doi.org/10.1037/bul0000115
https://doi.org/10.1037/bul0000115
https://doi.org/10.1111/j.0956-7976.2004.00715.x
https://doi.org/10.1002/bdm.665
https://doi.org/10.1002/bdm.665
https://doi.org/10.1002/bdm.598
https://doi.org/10.1002/bdm.598
https://doi.org/10.1002/bdm.737
https://doi.org/10.1523/JNEUROSCI.5613-10.2011
https://doi.org/10.1523/JNEUROSCI.4156-11.2012
https://doi.org/10.1371/journal.pone.0016749
https://doi.org/10.1371/journal.pcbi.1010323


36. Fan Y, Gold JI, Ding L. Ongoing, rational calibration of reward-driven perceptual biases. Elife. 2018; 7:

e36018. https://doi.org/10.7554/eLife.36018

37. Afacan-Seref K, Steinemann NA, Blangero A, Kelly SP. Dynamic interplay of value and sensory infor-

mation in high-speed decision making. Current Biology. 2018; 28(5):795–802. https://doi.org/10.1016/j.

cub.2018.01.071

38. Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD. The physics of optimal decision making: a formal

analysis of models of performance in two-alternative forced-choice tasks. Psychological review.

https://doi.org/10.7554/eLife.36018
https://doi.org/10.1016/j.cub.2018.01.071
https://doi.org/10.1016/j.cub.2018.01.071
https://doi.org/10.1037/0033-295X.113.4.700
https://doi.org/10.1523/JNEUROSCI.3078-16.2017
https://doi.org/10.1523/JNEUROSCI.3078-16.2017
https://doi.org/10.1016/j.jmp.2018.11.001
https://doi.org/10.1038/380247a0
https://doi.org/10.1126/science.185.4157.1124
https://doi.org/10.1002/(SICI)1099-0771(199912)12:4%3C307::AID-BDM324%3E3.0.CO;2-H
https://doi.org/10.1002/(SICI)1099-0771(199912)12:4%3C307::AID-BDM324%3E3.0.CO;2-H
https://doi.org/10.1016/j.obhdp.2012.04.001
https://doi.org/10.1016/0001-6918(80)90046-3
https://doi.org/10.1038/nn.2450
https://doi.org/10.1038/ncomms11393
https://doi.org/10.1016/j.cobeha.2021.02.015
https://doi.org/10.1038/nn.3164
https://doi.org/10.1523/JNEUROSCI.3270-14.2014
https://doi.org/10.1371/journal.pcbi.1005260
https://doi.org/10.1016/0010-0285(85)90010-6
https://doi.org/10.1371/journal.pcbi.1010323

