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Abstract

Solutions to challenging inference problems are often subject to a fundamental trade-off

between: 1) bias (being systematically wrong) that is minimized with complex inference

strategies, and 2) variance (being oversensitive to uncertain observations) that is minimized

with simple inference strategies. However, this trade-off is based on the assumption that the

strategies being considered are optimal for their given complexity and thus has unclear rele-

vance to forms of inference based on suboptimal strategies. We
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preregistered, online study. The participants tended to use suboptimal decision strategies

that reflected an inversion of the classic bias-variance trade-off: some used complex,

nearly normative strategies with mistuned evidence weights that corresponded to rela-

tively high choice biases but lower choice variance, whereas others used simpler heuristic

strategies that corresponded to lower biases but higher variance. These relationships illus-

trate structure in suboptimality that can be used to identify
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S1 Text “Task and Recruitment” for additional details). The ratios of colored balls in each jar

were varied to create five blocks of trials and could be described by the proportion of balls

https://doi.org/10.1371/journal.pcbi.1010323.g002
https://doi.org/10.1371/journal.pcbi.1010323


http://osf.io
http://osf.io
https://doi.org/10.17605/OSF.IO/J9XET
https://doi.org/10.1371/journal.pcbi.1010323.g003
https://doi.org/10.1371/journal.pcbi.1010323


https://doi.org/10.1371/journal.pcbi.1010323.g004
https://doi.org/10.1371/journal.pcbi.1010323


https://doi.org/10.1371/journal.pcbi.1010323.g005
https://doi.org/10.1371/journal.pcbi.1010323


https://doi.org/10.1371/journal.pcbi.1010323


https://doi.org/10.1371/journal.pcbi.1010323


https://doi.org/10.1371/journal.pcbi.1010323


https://doi.org/10.1371/journal.pcbi.1010323


https://doi.org/10.1371/journal.pcbi.1010323


https://doi.org/10.1371/journal.pcbi.1010323


https://doi.org/10.1371/journal.pcbi.1010323


https://doi.org/10.1371/journal.pcbi.1010323


https://doi.org/10.1371/journal.pcbi.1010323


assumption that the observer chooses the high jar with some probability whenever one or

more rare balls are observed (“Rare Ball”). This assumption is equivalent to
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complexity. The first approach was purely data-driven, allowing us to avoid making assump-

tions about the specific, algorithmic form of each strategy. This approach was based on the

idea that efficient inference strategies solve an “information bottleneck” problem [10], which is

closely related to lossy data compression and rate-distortion theory [11]; i.e., maximizing pre-

dictive accuracy for a fixed information budget. Specifically, for this approach we computed

two quantities using data separately from each subject and block: 1) strategic complexity, mea-

sured as the mutual information (MI) between the subject’s observations (the samples of balls

observed on each trial) and their choices in the given block (Fig 6A), where larger values

implied that the known ball sample reduced uncertainty in a subject’s choice; and 2) strategic

effectiveness, measured as the proximity of the subject’s accuracy to the maximum achievable

accuracy given their strategic complexity (termed the “optimal accuracy bound”; for details see

the “Complexity Analyses” S7 Text of the Supplemental Materials), where smaller values

implied that the strategy was being used more effectively to generate correct choices for a

given level of complexity. Note, high complexity does not necessarily imply high accuracy

since complex strategies could use irrelevant information and/or be ineffective, increasing the

distance to the maximal achievable accuracy.

In general, subjects who used more-complex strategies (i.e., those who used more informa-

tion from the current trial to make choices) were more accurate, withmod
(more-athe9388increasin9180j
37779 0 Td
(smost
(used)Tj
2.5
1.1735 0 Tdre-complex)Tj
6.09481 0 Td
mosti.e.,)Thve,from the mod
(ming)Tj
j
1.3832 0 Td
irrelevant0 Td
(were)Tj
2.1203 0 Td
(be)lyake

block (Note,

https://doi.org/10.1371/journal.pcbi.1010323


https://doi.org/10.1371/journal.pcbi.1010323


the task. Based on our assignments, this metric showed a sample-length dependent scaling in

Bayesian complexity, but still confirmed that measures of complexity for the Bayesian models

were much larger than those of heuristics (Fig 6E). These model-based results support the idea

that the observed patterns of bias and variance are inherent to the relationship between the strat-

egies described by these models and not simply idiosyncrasies of the subjects’ behavioral pat-

terns, with errors in more-complex Bayesian-like strategies leading to increased biases, but less-

complex strategies based on the pattern of observations leading to increased variance (details of

this analysis can be found in Supplementary Materials S7 Text “Complexity Analyses”, S16 Fig).

Discussion

How do people’s error trends depend on the inference strategies they use? We examined the

properties of errors made by human subjects performing a two-alternative forced-choice task

with asymmetric evidence [7, 16, 17]. The evidence took the form of two colors of balls drawn

from jars, such that one (“rare”) color was drawn less often than the other. Similar to ideal

observers, most subjects exhibited a choice asymmetry favoring the option that produced

fewer rare balls. In addition, subjects fell into two categories depending on the type of strategy

that best described their responses. Subjects described by heuristic strategies, which were

based on less information and fewer algorithmic operations, displayed substantially more

choice variability but comparable choice asymmetry to the ideal observer. In contrast, subjects

described by more-complex, mistuned Bayesian strategies displayed minimal increases in

choice variability but much more bias than the ideal observer. These effects reflected the nature

of the suboptimalities introduced by each strategy type: the heuristic strategies we considered

did not take into account specific task features responsible for choice asymmetries and thus

tended to add variability, whereas the Bayesian-like strategies that we considered did attempt

to model those features explicitly but, when implemented suboptimally (mistuned) by the sub-

jects, tended to exacerbate asymmetries inherent in such decision rules.

Inversion of the bias-variance trade-off

These findings provide new insights into the generalizability of bias-variance trade-offs that

are well established in machine learning and related fields [2, 3] and can be used to account for

individual differences in human behavior under certain conditions [1, 4]. Bias-variance trade-

offs can be conceptualized in terms of fitting various functions that differ in complexity (e.g.,

polynomial order) to noisy data whose generative source is unknown. Typically, simpler (e.g.,

linear) models tend to have higher bias, because they miss higher-order (e.g., nonlinear) fea-

tures of the generative source, but lower variance, because their best-fitting parameters are rel-

atively stable across different data instances. In contrast, more complex (e.g., high-order

polynomial) models tend to have lower bias, because they can capture complex features of the

data, but higher variance, because the specific features they capture can differ across different

data instances.

Critically, this traditionalacross
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optimality. Specifically, we considered two broad classes of strategies that could result in sub-

optimalities either from the model used or a mistuning of the parameters. In the context of

asymmetric evidence, these suboptimalities introduced errors that could invert the bias-vari-

ance trade-off. However, this inversion only manifested when considering the relationship of

complexity across model classes in asymmetric contexts. In contrast, decreases in complexity

within a model class in asymmetric contexts produced increases in both bias and variance,

regardless of model class. Therefore, our results suggest that the inversion of the bias-variance

trade-off arises in particular situations, such as when suboptimal strategies are used in asym-
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choice biases in tasks with symmetric evidence but asymmetries in expected choice frequencies

[30–33] or reward outcomes [32, 34–37]. Under those conditions, biases based on asymmetric

priors are common and, on average, tend to follow established, normative principles often for-

mulated in the context of Signal Detection Theory [30] and/or sequential analysis [38]. In our

study, subjects tended to either use inappropriate priors (e.g., subjects whose choices were best

matched by the Prior Bayesian model with a prior biased towards the low jar) or neglect the

symmetric prior altogether (e.g., subjects whose choices were best matched by heuristic mod-

els). These strategies could, in principle, reflect a relatively common form of recency bias that

can cause an initial belief shift in the direction of the previous response [31, 32, 34, 35, 39, 40],

and, more generally, is consistent with many previous findings of mistuned priors [41–45].

Alternatively, while our Prior Bayesian model described changes in choice asymmetry that

were attributed to biased priors without impacts to the ideal evidence weights, it is plausible
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observations and their responses [49]. Moreover, the presence and amplitude of rewards

shapes task attention [50], which could be reflected in strategy usage.

In this task, suboptimality took three forms: 1) underweighting rare balls; 2) biased priors

in favor of the low jar; and 3) applying heuristics, which occurred predominantly in harder

tasks. We hypothesize that underweighting may be the result of weighting biases in favor of

symmetric weights, rather than a mistuning relative to the ideal-observers weights, given that

subject’s rare-ball parameters showed comparable values for both easy and hard asymmetric

blocks. Likewise, the mistuning of subjects’ priors in favor of the low jar may reflect a recency

bias, in which previous low-jar responses encourage subjects
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variance, consistent with general trends of better (less variable) performance associated with

more-complex strategies.

(TIF)

S14 Fig. Mutual information with previous response. Across-group bias-variance relation-

ships were robust to a measure of mutual information (MI) that took into account not just the

balls observed on the current trial (i.e., relevant information, as in Fig 6A)) but also the previ-

ous choice (i.e., irrelevant information), for the two asymmetric blocks (columns, as indi-

cated).
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