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Synaptic mechanisms of 
interference in working memory
Zachary P. Kilpatrick1,2

Information from preceding trials of cognitive tasks can bias performance in the current trial, a 
phenomenon referred to as interference. Subjects performing visual working memory tasks exhibit 
interference in their responses: the recalled target location is biased in the direction of the target 
presented on the previous trial. We present modeling work that develops a probabilistic inference model 
of this history-dependent bias, and links our probabilistic model to computations of a recurrent network 
wherein short-term facilitation accounts for the observed bias. Network connectivity is reshaped 
dynamically during each trial, generating predictions from prior trial observations. Applying timescale 
separation methods, we obtain a low-dimensional description of the trial-to-trial bias based on the 
history of target locations. Furthermore, we demonstrate task protocols for which our model with 
facilitation performs better than a model with static connectivity: repetitively presented targets are 
better retained in working memory than targets drawn from uncorrelated sequences.

Parametric working memory experiments are a testbed for behavioral biases and errors, and help identify neural 
mechanisms that underlie them1–3. In visuospatial working memory, subjects identify, store, and recall target 
locations in trials lasting a few seconds. Response errors are normally distributed4–6, and tend to accumulate dur-
ing the delay-period, while subjects retain the target location in memory1,6,7. Complementary neural recordings 
suggest these working memories are implemented in circuits comprised of stimulus-tuned neurons with slow 
excitation and broad inhibition8,9. Persistent activity emerges as a tuned pattern of activity called a bump state, 
whose peak encodes the remembered target position6,10.

Neuronal studies of visual working memory typically focus on population activity within a single trial, ignor-
ing serial correlations across trials11. Several authors have identi�ed behavioral biases that cause the previous 
trial’s visual target to interfere with the subject’s response on the subsequent trial12,13. For instance, in delayed 
match-to-sample tests, false alarms occur more o�en when comparison stimuli match samples from previous 
trials14
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As has been shown previously, Eq. (2) can be written iteratively36:
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suggesting such a computation could be implemented and represented by neural circuits. Temporal integration of 
tuned inputs has been demonstrated in both neural recordings37–39 and circuit modelsl recordings
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Note, sequential computations are trivial in the limit of a constantly-changing environment ε → 1, since the 
observer assumes the environment is reset a�er each trial. Prior observations provide no information about the 
present distribution, so the predictive distribution is always uniform: ≡θ+L Pn 1, 0.

In summary, a probabilistic inference model that assumes the distribution of targets is predictable over short 
timescales leads to response biases that depend mostly on the previous trial. We now demonstrate that this pre-
dictive distribution can be incorporated into a low-dimensional attractor model which describes the degradation 
of target memory during the delay-period of visual working memory tasks10,41,42.

Incorporating suboptimal predictions into working memory.  We model the loading, storage, and 
recall of a target angle θ using a low-dimensional attractor model spanning the space of possible target angles 
θ ∈ [−180, 180)°. �ese dynamics can be implemented in recurrent neuronal networks with slow excitation and 
broad inhibition6,9,43. Before examining the e�ects of neural architecture, we discuss how to incorporate the pre-
dictive distribution update, Eq. (3), into an associated low-dimensional model. Our analysis links the update of 
the predictive distribution to the spatial organization of attractors in a network. Importantly, working memory 
is degraded by dynamic �uctuations, so the stored target angle wanders di�usively during the delay-period6,9,42.

During the delay-period of a single trial, the stored target angle θ(t) evolves according to a stochastic di�er-
ential equation10:

θ θ
θ
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q(x, t) determines an evolving potential function 
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at θn+1. �e STF variable’s center-of-mass θq(t) slowly dri�s towards θn, which allows θ(t) to dri� there as well, 
θ θ− t( ( ))q . �is accounts for the slow build-up of the bias that increases with the length of the delay-period13.
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distinct from neural activity13, as dynamic synapses are in our model. In total, our model provides both an intu-
ition for the behavioral motivation as well as neurophysiological mechanisms that produce such interference.

Discussion



www.nature.com/scientificreports/

1 0SCientifiC REPOrTS |  (2018) 8:7879 �ȁ��  ��ǣͷͶǤͷͶ͹;Ȁ�ͺͷͻͿ;ǦͶͷ;Ǧ͸ͻͿͻ;ǦͿ

Comparison with previous work.  �e work of Papadimitriou et al.13,55 also contains modeling studies, 
accounting for some aspects of their experimental observations. Our computational model di�ers from and 
extends their �ndings in several important ways. We propose that interference can arise as a suboptimal inference 
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Methods
Assumptions of the inference model. 
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in13. Intertrial intervals are varied to produce Fig. 5B by drawing = − + ++T t T T T: ( )I
n

n C D
n

A1  randomly from a 
uniform pmf for the discrete set of times ∈ …T {1000, 1200, , 5000}msI

n  and θn randomly as in Fig. 5A and iden-
tifying the θn that produces the maximal bias for each value of TI

n. Delay-periods are varied to produce Fig. 5C by 
drawing TD

n randomly from a uniform pmf for the discrete set of times ∈ …T {0, 200, , 5000}msI
n  and following a 

similar procedure to Fig. 5B. Draws from a uniform density function θ ≡P( ) Pn 0, de�ned on θn ∈ [−180, 180)° are 
used to generate the distribution in Fig. 6A and plots in Fig. 7. Nontrivial correlation structure in target selection is 
d e f i n e d  b y  t h e  s u m  o f  a  v o n  M i s e s  d i s t r i b u t i o n  a n d  u n i f o r m  d i s t r i b u t i o n 

θ θ ε ε= − +θ θ μ
+

− −+corr ( , ) (1 ) e Pn n v1
25cos( )

0
n n 1  for �xed θn with ε = 0.5; μ = 0 for local correlations (Fig. 6B) and 

μ = 90 for skewed correlations (Fig. 6C).
�e recurrent network, Eq. (15), is assumed to encode the initial target θn during trial n via the center-of-mass 

θ(t) of the corresponding bump attractor. Representation of the cue at the end of the trial is determined by per-
forming a readout on the neural activity u(x, t) at the end of the delay time for trial n: = + +t t T Tn C D

n. One way 
of doing this would be to compute a circular mean over x weighted by u(x, t), but since u(x, t) is a roughly sym-
metric and peaked function in x, computing θ =t u x t( ): argmax ( , )x  (when ∈ + +t t t T T[ , )n n C D

n ) is an accurate 
and e�cient approximation6,42. �e bias and relative saccade endpoint on each trial n are then determined by 
computing the di�erence θ(t) − θn (Figs 5, 6 and 7).

Deriving the low-dimensional description of bump motion.  We analyze the mechanisms by which 
STF shapes the bias on subsequent trials by deriving a low-dimensional description for the motion of the bump 
position θ(t). To begin, note that in the absence of facilitation (β ≡ 0), the variable q(x, t) ≡ 0. In the absence of 
noise (W(x, t) ≡ 0), the resulting deterministic Eq. (15
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where α is a scaling constant and tn+1 is the starting time of trial n + 1 in the original time units t = τts/τu. �e 
form of the probability fθ′(θ) that can be represented is therefore restricted by the dynamics of the facilitation 
variable q(x, t). We can perform a direct calculation to identify how q(x, t) relates to the predictive distribution it 
represents in the following special case.

Explicit solutions for high-gain firing rate nonlinearities.  To explicitly calculate solutions, we take the 
limit of high-gain, so that F(u) → H(u − κ) and w(x) = cos(ω1x), note ω1 = 180/π. Note, we have compared our 
predictions here with the results of numerical simulations for sigmoidal �ring rates F(u) = 1/[1 + e−γ(u−κ)] with 
gain γ = 20, and the results are in good agreement. In this case, the bump solution U(x − x0) = (2 sin(a)/ω1)
cos(ω1(x − x0)) for U(±a) = κ and null vector V(x − x0) = δ(x − x0 − a) − δ(x − x0 + a) (without loss of generality 
we take x0 ≡ 0)47. Furthermore, we can determine the form of the evolution of q(x, t) by studying the stationary 
solutions to Eq. (15) in the absence of noise (W ≡ 0). For a bump U(x) centered at x0 = 0, the associated stationary 
form for Q(x) assuming H(U(x) − κ) = 1 for x ∈ (−a, a) and zero otherwise is Q(x) = βq+/(1 + β) for x ∈ (−a, a) 
and zero otherwise. �us, if the previous target was at θn, we expect q(x, t) to have a shape resembling Q(x − θn) 
a�er trial n. Assuming the cue plus delay time during trial n was +T TC D

n and the intertrial interval is TI
n, slow 

dynamics will reshape the amplitude of q(x, t) so = − τ τ− + −T( ) (1 e )en
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