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ear (Piet et al., 2018; Brunton et al., 2013). Each click train is generated by aMarkov-modulated Poisson process (Fischer
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sensitive to themode of evidence accumulation they use in fluctuating environments. We also show how using different
models and different data fittingmethods can lead to divergent results, especially in the presence of sensory noise. We
argue that similar issues can arise whenever we try to interpret data from decision-making tasks.

2 | NORMATIVE MODEL FOR THE DYNAMIC CLICKS TASK
In the dynamic clicks task an observer is presented with two Poisson click streams, sL „t ” and sR „t ” (� < t � T ), and
needs to decide which of the two has a higher rate (Brunton et al., 2013). The rates of the two streams are not constant,
but change according to a hidden, continuous-timeMarkov chain, x „t ”, with binary state space fxR , xL g. The frequency
of the switches is determined by the hazard rate, h, so that P„x „t ý d t ” , x „t ”” = h � d t ý o„d t ”. The left and right
rates, �L „t ” and �R „t ”, can each take on one of two values, f�high, �low gwith �high > �low > �. When x „t ” = xL , we have
„�L „t ”, �R „t ”” = „�high, �low”, and when x „t ” = xR the opposite is true. Therefore x „t ” = x k means that stream k has the
higher rate at time t : �k „t ” = �high (Fig. 1A). The observer is prompted to identify the side of the higher rate stream,
x „T ”, at a random timeT . The interrogation time,T , is sampled ahead of time by the experimenter for each trial and is
unknown to the subject. We refer the reader to Piet et al. (2018) and Brunton et al. (2013) for more details about the
experimental setup.

This task is closely related to the filtering of a HiddenMarkovModel studied in the signal processing literature (Cappé
et al., 2005; Rabiner and Juang, 1986). For a single, 2-stateMarkov-modulated Poisson process (Fischer andMeier-
Hellstern, 1992), the filtering problemwas solved by Rudemo (1972) – see also (Snyder, 1975) for review and extensions.
This filtering problem corresponds to a task in which a single, variable rate click stream is presented to the observer who
has to report whether at some timeT the rate is high or low. In the present case, the observer is presentedwith two
coupledMarkov-modulated Poisson processes. The normativemodel reduces to that considered by Rudemo (1972)
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F IGURE 1 A: Schematic of the dynamic clicks task from Piet et al. (2018). B:A single trajectory of the log-likelihood
ratio (LLR), yt , during a trial. The click streams and environment state are shown above the trajectory. C:Response
accuracy of the ideal observer as a function of interrogation time for two distinct SNR values, S�ph, defined in Eq. (6).
Two distinct pairs of click rates used in simulations (�low = �� and ��Hz) were chosen tomatch each SNR at hazard rate
h = �Hz, resulting in overlaying dashed (�low = ��Hz) and solid (�low = ��Hz) lines. For S�ph = �, we take
„�high, �low” = „��.��, ��” and „�/ 3)`
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3 | THE SIGNAL-TO-NOISE RATIO OF DYNAMIC CLICKS
Four parameters characterize the dynamic clicks task: the hazard rate, h, duration of a trial, i.e. interrogation time,T ,
the low click rate, �low , and the high click rate, �high . However, we next show that only two effective parameters typically
govern an ideal observer’s performance (Fig. 1C,D): the product of the interrogation time and the hazard rate, hT , and
the signal-to-noise ratio (SNR) of the dynamic stimulus. The former corresponds to themean number of switches in a
trial, and the latter combines the click rates �low and �high into a Skellam–type SNR (Eq. (4) below), scaled by the hazard
rate h (Eq. (6)).

Tomotivate our definition, consider first the case of a static environment, h = �Hz, forwhich the normativemodel is
given by Eq. (2) without the nonlinear term. Since � does not affect the sign of yt , response accuracy depends entirely on
the difference in click counts N R „t ” � N L „t ”, whereN j „t ” are the counting processes associated with each click stream.
Thus we can define the difference in click counts as the signal, and the SNR as the ratio between the signal mean and
standard deviation at timeT (Skellam, 1946),

SNRT� := E»N R „T ”… � E»N L „T ”…pVar»N R „T ”… ý Var»N L „T ”… = T �high �T �lowp
T �high ýT �low

= S �
p
T , (3)

where

S := �high � �lowp
�high ý �low

. (4)

In a dynamic environment, the volatility of the environment, governed by the hazard rate, h, also affects response
accuracy. The environment can switch states immediately before the interrogation time, T , decreasing response
accuracy. This suggests that accuracy will not only be determined by the click rates, but also by the length of time
the environment remains in the same state prior to interrogation. Using this fact and the definition of SNR in a static
environment, we determine the statistics for the difference in the number of clicks between the high- and low-rate
streams during the final epoch preceding interrogation (for derivation details see Appendix B). Averaging over the
Poisson distributions characterizing the click numbers, and the epoch length distribution yields a nonlinear expression
representing the SNR that involves S�ph h

WHERE EP1Vf@1PNWYX@VNSUP@l@M@[HEI]tjOfHnI]tVPt@P@1@1WXNRYY@RX1�W@cm*[WP@d@P@j@PNTTV@w@P@P@m@SYNRYPP@td@RU@1PUYWSSY@WNYWP1@tf@1WXN1WY@RWTNSTV@td@[HhI]tjOfSTP@WNYWP1@tf@TN1fRYPPWUd@RUYSHR1td@[HhI]tjOXR@w@P@P@m@TNRRYXT@TYWPXSYTW*OfTRT@WNYWP1@tf@RRWNUUX@SYSN1S@tdTS@[HpI]tj*et*q*1@P@P@1@1VTNY1XYXT@TYWPXXY@t]P@d@P@j@PNTTV@w@P@P@m@SYNRPspof@TPXXYSTROfTRT@WNYWP1@tf@RRWNUUX@SYSN1S1NXPY@[HhI]tjOfSTP@W1Vf@1PNWYX@VNRPspof@TPS@tWXTtjOfSSY@VNYWP1@tf@11NRSV@VNSU1@tRWRI]tjOf1X�]tj@YNTTU@VNWTV@td@[XYWUVwhere%=
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signal (See Appendix C).
Fig. 1C shows examples in which the ideal observer’s response accuracy is constant when SNR and hT are fixed.

Accuracy is computed as the fraction of trials at which the observer’s belief, yt ,matches the underlying state, x „t ”,
at the interrogation time,T , that is the fraction of trials for which sign„yT ” = x „T ”. The accuracy as a function ofT
and h = � remains constant if we change �high and �low, but keep S fixed. As the interrogation timeT is increased, the
accuracy saturates to a value below 1 (Fig. 1C), consistent with previousmodeling studies of decision-making in dynamic
environments (Glaze et al., 2015; Veliz-Cuba et al., 2016; Radillo et al., 2017; Piet et al., 2018). Evidence discounting
limits themagnitude of the LLR, yt . Hence a sequence of low rate clicks can lead to errors, especially for low SNR values.
Moreover, on some trials the state, x „t ”, switches close to the interrogation timeT . As it may takemultiple clicks for yt
to change sign after a change point (See Fig. 1B), this can also lead to an incorrect response.

In Fig. 1D we show that the maximal accuracy (obtained forT sufficiently large) as a function of �high and �low
(colormap), is approximately constant along SNR level sets (black oblique curves). This correspondence is not exact
when �high and �low are small (Fig. 1D inset), and we conjecture that this is because higher order statistics of the signal
determine response accuracy in this parameter range. As discussed in Appendix C, for large �high and �low we can use a
diffiusion approximation for the dynamics of Eq. (2). When �high and �low are small, the diffusion approximation does
not apply, and response accuracy is characterized by features of the signal beyond its mean and variance. Since the
SNR only describes the ratio between themean and standard deviation of the stimulus, it cannot capture the impact of
higher order statistics on accuracy at low click rates. Nonetheless, the SNR predicts response accuracy well.

The consequences of theseobservations are twofold: Twoparameter combinations determineoptimal performance,
potentially simplifying experiment design. To ensure coverage of different response accuracy regimes, we can initially
vary SNR and hT . To increase the accuracy of an ideal observer, it is not sufficient to increase both click rates, for
instance, since the SNR stays constant if �high and �low follow the parabolas shown in Fig. 1D. Second, this approach
makes testable predictions about the accuracy of an optimal observer: If we change parameters so that SNR and hT are
fixed, and a subject’s accuracy is affected, this indicates that the subject may not have learned the hazard rate, h or is
using a suboptimal discountingmodel.

4 | POST CHANGE-POINT DECISIONS DEPEND ON SNR
To understand how an optimal observer adapts to environmental changes, we next ask how their fraction of correct
responses depends on the final time,Tfin, between the last change point preceding a decision and the decision itself
(Fig. 2A). Overall accuracy again depends on both SNR and rescaled trial time hT . In addition, for sufficiently long trials,
accuracy as a function of time since the last change point depends only on the rescaled time since the change point, hTfin
and the SNR.

If the click rates, �high and �low, are varied, but S and h are held fixed, the accuracy as a function ofTfin remains
unchanged (Fig. 2B, for h = �, S = �). On the other hand, accuracy changes if we fix S�ph (SNR) but vary h
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F IGURE 3 A:Optimal linear discounting rate, 
� in Eq. (7), as a function of S�ph. A(inset): The accuracy of the
linear and nonlinear model are nearly identical over a wide range of SNR values, S�ph,when the linear discounting rate
is set to 
� (here h = � is fixed). B:Response accuracy near the optimal discounting rate for the linear model (dashed),
and assumed hazard rates for the nonlinear model (solid) for several SNR values (h = �). The linear model is more
sensitive to relative changes in the discounting rate. The relative error is defined as ���„ Ûh � h”�h for the nonlinearmodel
and ���„ Û
 � 
�”�
� for the linear model. C:Curvature (absolute value of the second derivative) of the accuracy profiles
in panelB, evaluated at their peak, as a function of S�ph. The curvature, and hence sensitivity, of the nonlinear model is
higher for intermediate and large values of S�ph. Since the functions in panelB do not depend on the actual values of Ûh
and Û
, but rather the relative distance of these parameters from reference values, what we show in this plot are relative
curvatures. We compare relative curvatures as Ûh and Û
 do not have the same units. D: Ratio of the accuracy of the linear
model to that of the normativemodel, as SNR is varied. Along each curve, the discounting rate Û
 of the linear model is
held fixed at the value 
� that wouldmaximize accuracy at the reference SNR indicated by the legend.

5 | A LINEAR APPROXIMATION OF THE NORMATIVE MODEL
Following Piet et al. (2018) we next show that an approximation of the normative model given by Eq. (2) can be tuned to
give near optimal accuracy, but the accuracy of the approximation tends to be sensitive to the changes in the discounting
parameter. This approximate, linear model is given by,

dyt
d t

= �

266664
1Õ
i=�

�„t � t Ri ” �
1Õ
j=�

�„t � t Lj ”
377775 � 
 � yt . (7)

In particular, here the nonlinear sinh term in Eq. (2) is replaced by a linear term proportional to the accumulated
evidence.

When tunedappropriately, Eq. (7) closely approximates thedynamics andaccuracyof theoptimalmodel (Fig. 3A) (Piet
et al., 2018; Veliz-Cuba et al., 2016). Moreover, it also provides a good fit to the responses of rats on a dynamic clicks
task (Piet et al., 2018). As the normative and linearmodels exhibit similar dynamics, it appears that they are difficult
to distinguish. However, as we show next, the linearmodel is more sensitive to changes in its discounting parameter,
providing a potential way to distinguish between themodels.

We assume thatT is large enough so that accuracy has saturated (as in Fig. 1C), and compare themaximal accuracy
of the nonlinear and linear model. For the linear discounting rate that maximizes accuracy, 
 = 
�, the linear model



10 RADILLO, VELIZ-CUBA, JOSIĆ, & KILPATRICK

obtains accuracy nearly equal to the normativemodel (Fig. 3A, inset). The optimal linear discounting rate, 
�, increases
with SNR (Fig. 3A), whereas the discounting term in the normative, nonlinear model remains constant when the hazard
rate, h, is fixed. When SNR is large, evidence discounting in the linear model can be stronger (larger 
�), since each
evidence increment is more reliable and can be givenmoreweight. When SNR is lower, linear evidence discounting is
weaker (smaller 
�) resulting in the averaging of noisy evidence across longer timescales.
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and Acclin„S”when h = � is the red curve in Fig. 3D. Since the ratio between Accnorm„Sref” and Acclin„Sref” is near 1, the
linear and normativemodels cannot be distinguished at Sref. However, a subject using the normativemodel tuned at
Sref, will still perform optimally at S , Sref, if � and h are held constant. On the other hand, a linear model optimized at
Sref, will no longer be optimal at S , Sref. This distinction is captured by the drop in the accuracy ratio along the red
curve in Fig. 3D.

We can quantify the distinction between the twomodels by their relative difference:
Accnorm„Snew” � Acclin„Snew”

Accnorm„Snew” = �.��.

More generally, for TWH@UNWWX@RNXYS@td@[HrefI]Y1@tm@[HhI]tWoreIM1YSHgenerI1YHallyaisW1IMVPHsI]tjoTbgHM1YSHfIefI]tjOSS@VNYWSX@tf@R1Ndifference:
Accnorm
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Before fitting these models to choice data, we note that an increase in sensory noise, � , decreases the value of
the discounting parameters that maximize accuracy in both models (Piet et al., 2018): Noisier observations require
integration of information over longer timescales (Fig. 4A,B). Thus, adaptivity to change points is sacrificed in order to
pool over larger sets of observations . This, in turn, leads to larger biases, particularly after change points. A similar
trade-off between adaptivity and bias has been observed in models and human subjects performing a related dynamic
decision task (Glaze et al., 2018).

We next fit the discounting parameters in bothmodels using synthetic choice data, treating the other parameters
of themodels as known. To do so we produced responses using a fixed reference model from both classes, and fit a model
from each class to the resulting datasets. Specifically, letmref 2 fL,NLg (L = linear, NL = nonlinear) denote the reference
model used to produce the choice data, and letmfit 2 fL,NLg denote themodel that was fit to the resulting data. We
independently studied the four possible model pairs „mfit,mref”. In what follows, � refers to the discounting parameter
that was fit to data in any given class, so that � := 
 whenmfit = L and � := h whenmfit
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the reference choice data with the nonlinear and linear models, respectively. To pick these constants in our simulations,
we took the values that would maximize accuracy in the corresponding noise-free systems. That is, href := hstim = � and

ref := 
� � �.�� (See Appendix F for more details on the simulations).

During a single fit, we generated stimulus data for N i.i.d. trials,

D := f„Tk , dk ” : � � k � N g , (10)

where Tk :=
��
t R
i

	NR ,k
i=�
,
n
t L
j

oNL,k
j=�

�
is the sequence ofN�
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hand, the linear model fits – „L,NL” and „L, L” – converge more rapidly, likely because the linear model is sensitive to
changes in its discounting parameter (See Fig. 3B,C).

In anticipation of our next section, we point out that computing theMLE can be treated as a statistical learning
problem in which weminimize a negative log-likelihood loss function over the datasetD (See Eq. 7.8 in Friedman et al.
(2001)):

LLL „dk ,mfit„Tk ” j�, �” := � log P„dk = mfit„Tk ” j�, �”. (12)

Here dk andmfit„Tk ” are the choices generated by the reference and fit models, respectively, on the k th trial. As before
the discounting parameter, �, and the level of sensory noise, �, parametrize the fittedmodel. Fittedmodel responses
mfit„Tk ” are non-deterministic only because of sensory noise. The likelihood P„dk = mfit„Tk ” j�, �” is the probability that
the response generated by the fitmodel on trial k matches the response observed in the data (See Appendix F for details
on how this likelihoodwas computed for eachmodel class), whichmust be obtained frommany realizations ofmfit„Tk ”
subject to click noise of amplitude � . TheMLE, ��, formfit is then found byminimizing the expected loss across all trials,
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of the loss function L��� over the data samples „Tk , dk ” and across realizations, Z j , of sensory noise,

�� := argmin�E �
L���„dk ,mfit„Tk , Z j ” j�, �”

�
= argmin� �

QN

QÕ
j=�

NÕ
k=�

L���„dk ,mfit„Tk , Z j ” j�, �”.

For a binary decisionmodel, this involves finding the parameter � that minimizes the expected number of mismatches
(or probability of amismatch) between the choices of themodel and those observed by the data (minimizing 0/1-loss),
or maximizes the expected number of matches (or probability of a match) between the data and fit model (maximizing
0/1-prediction accuracy). In our fits, we usedQ = �, sampling a single realization of click noise perturbations per click
stream. As we sampled from a large number of click streams, this was sufficient to average the loss function.

BotgNUtgNUtgNM1YSHtoI@td@[HkI]tjOd@[HkI]tjOdS
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information can then be used to tease apart candidatemodel classes the experimental subjectmight be employing. Here
we have focused on properties of a normative, nonlinear model, and its differences with a close, linear approximation.
We found that the linearmodel is more sensitive to changes in the discounting parameter compared to the nonlinear
model, and suggest this is why fitting a linear model to choice data requires fewer trials than fitting a nonlinear model.

In dynamic environments, task parameters may have predictable effects on subjects’ overall accuracy and accuracy
relative to change points. We have shown that there is a range of intermediate to high SNR inwhich the linearmodel
is sensitive to changes in its discounting parameter, but the nonlinearmodel is not. This suggests this range could be
probed to distinguish the evidence accumulation strategies subjects are using. These strategies may also be fit by other
approximate models, like accumulators with no-flux boundaries or sliding-window integrators (Wilson et al., 2013;
Glaze et al., 2015; Barendregt et al., 2019), which can also be sensitive to changes in their discounting parameters.

Psychophysical tasks used to infer subjects’ decision-making strategies can require extensive training and data
collection (Hawkins et al., 2015b,a). Normative and approximately normative decision-makingmodels divergemost in
their response accuracy when tasks are of intermediate difficulty. As we have shown, task difficulty may be controlled
by combinations of task parameters representing fewer dimensions than the total number of parameters. Identifying
these parameter combinations may be possible by computing the signal-to-noise (SNR) ratio of the stimulus produced
by a particular parameter set. However, subjects’ responses are also susceptible to noise from sensing and processing
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characterizing discounting between clicks, when evidence arrives discretely. Many different functions could lead to the
same amount of evidence discounting between clicks, leading to ambiguity in themodel selection process.

Parameter identification for evidence accumulation models can be sensitive to the method chosen to fit model
responses to choice data (Ratcliff and Tuerlinckx, 2002). Glaze et al. (2015) used the approach of minimizing the
cross-entropy error function, whichmeasures the dissimilarity between binary choices in themodel and the data. Piet
et al. (2018) used amaximum likelihood approach to identify model parameters that most closely matched choice data.
This is related to the Bayesian estimation approachwe used to fit parameters of the nonlinear and linearmodels. We
obtained similar results byminimizing the expected 0/1-loss, which biases towards less variable models, especially for
models with strong sensory noise (Fig. 5). Amore careful approach to fittingmodel parameters should also consider
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for all n 2 ˛ and all n�t � t < „n ý �”�t . In the following, our discrete-time evidence accumulation equations are
embedded in continuous-time via the correspondence given by Eq. (14). As�t ! � the resulting equations apply to the
original state process xt in virtue of the sampled-time approximation just described.

Just as in Eq. (1), the log-posterior odds ratio in discrete-time is:

yn := log P„xn = x
R jsR „n”, sL „n””

P„xn = xL jsR „n”, sL „n”” .

Hence, equations (A.3) and (B.1) from the appendix of Veliz-Cuba et al. (2016) hold in our context:

yn � yn�� = log f
R
�t „�n ”
f L�t „�n ”

ý log � � h � �t ý h � �t � e�yn��
� � h � �t ý h � �t � e yn�� .

In addition, we use the approximation log„� ý z ” � z for small jz j, since � < �t � �, so that:

�yn = log f
ý
�t „�n ”
f ��t „�n ”

� �h�t sinh„yn��”.

Taking the limit�t ! � yields theODE:

dyt
d t

= �

266664
1Õ
i=�

�„t � t Ri ” �
1Õ
j=�

�„t � t Lj ”
377775 � �h sinh„yt ”,

or the equivalent rescaled version

dyt
d t

=
1Õ
i=�

�„t � t Ri ” �
1Õ
j
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Therefore to obtain the unconditional expectation and variance for �N , wemust marginalize using the laws of total
expectation and variance with respect to the distribution of epoch times � given in Eq. (15). This yields

E»�N … = „�high � �low”
„ T

�
�p„�”d� = � � e�hT

h
� „�high � �low” (16)

for the total expectation. Notice that asT !1, the expected number of clicks is limited from above by limT!1 E»�N … =
„�high � �low”�h. Using the law of total variance we can thus compute

Var»�N … = Var »E»�N j�…… ý E »Var»�N j�…… = „�high � �low”� � Var»�… ý � � e�hT
h

� „�high ý �low”

=
� � �hT e�hT � e��hT

h�
„�high � �low”� ý

� � e�hT
h

„�high ý �low”. (17)

Plugging Eq. (16) and (17) into the expression for SNRTh = E»�N …�
pVar»�N … yields

SNRTh =
„� � e�hT ”„�high � �low”q

„� � �hT e�hT � e��hT ”„�high � �low”� ý h � „� � e�hT ”„�high ý �low”
. (18)

Recalling our deVyieY1@PYjOf1SHourIM1YWP1RWwUU@SNqutm@[HeISPHx@UXNPYUTYSH(TM1NVTX@td@[HlowI]tjOfS]tj@R11I]t1R@tf@XSNsSR@RNVPY@td@[H]I]tjOf1Y[H�I]tjOf1V@Rd@[YY1XW@P@td@[H»I]tjOfSTX@WNYWP1@ttjOfSS[H]II]tjOfSTV@WNYW@1TSY@f@UNWUW@P@td@[H�I]tjOf1XS@PWNYWP1@tf@UNWUW@P@td@[HYPRlYHtheIM1@RNTYT@P@td@[W@P@td@[H»I]tjOfSTX@WNYWP1@ttjOfSS[H]II]tjOfSTV@WNYW@1TSY@f@UNWUW@P@td@[H�I]tjOf1XS@PWNYWP1@tf@UNWUW@P@td@[HYPRlYHtheIM1@RNTYT@P@td@[W@P@td@[H»I]tjOfSTX@WNYWP1@ttjOfSS[H]II]tjOfSTV@WNYW@1TSY@f@UNWUSTV@WNYW@1TSY@f@UNWUSTV@WNYW@1THintoIM1SWNYWm*[LPAUPNTTV@w@P@P@m@RRRNUTV@P@l@s*TSY@f@UNWU1UYNRP1@tf@RWPNY1R@TWSNXPY@td@Sh
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C | DIFFUSION APPROXIMATION

Here we demonstrate the diffusion approximation of the normative model for the dynamic clicks task, Eq. (2) in the
limit of large Poisson rates �high and �low. Diffusion approximations for jump processes have been addressed by Lánskỳ
(1997), and Richardson and Swarbrick (2010) who studied the impact of shot noise and pulsatile synaptic inputs on
integrate-and-fire models. Following this work, we note that the difference of the click streams in Eq. (2) can be
approximated by a drift-diffusion process withmatchedmean,��„�hi � �low”, and variance, ��„�hi ý �low”. This results in
the following stochastic differential equation (SDE) for the approximation Ûyt :

d Ûyt = �g „t ”„�high � �low”dt ý �
q
�high ý �lowdWt � �h sinh„ Ûyt ”dt , (21)

where g „t ” = sign »�R „t ” � �L „t ”… and dWt is the increment of a Wiener process. Note the resulting nonlinear drift-
diffusionmodel is similar to the normative models presented in (Glaze et al., 2015; Veliz-Cuba et al., 2016). The SNR of
the signal in Eq. (21) can be associated with the mean divided by the standard deviation in an average-length epoch.
Fixing this SNR leads to the relations in Eq. (6). Importantly, the signal in Eq. (21) is characterized entirely by its mean
and variance, so we expect that the performance of themodel can be directly associated with the SNR. Note, however,
that Eq. (21) will only be valid for �high, �low � �. Otherwise, onemust consider the effects of higher order moments of
the click streams, and a prediction of performance purely based on the SNRwill break down (Fig. 1D, Inset), since higher
order statistics likely shape response accuracy in these cases.

D | MODEL IDENTIFICATION

Wefi
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where �i , �j � N„�,�”, revealing yT k is simply the sum of i.i.d. normal random variables scaled by exponential decay.
Conditioning on the clicks Tk , then yT k is normally distributed

�
yT k jTk , 


� with expectation and variance
Ek := E �

yT k jTk , 

�
= �

2666664
N k
RÕ

i=�

e�
„T k �t iR ” �
N k
LÕ

j=�

e�
„T k �t jL ”
3777775 ,

V
E
�
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Ourmethod focuses on exploiting the likelihood function P„D j�”. We have,

P„D j�” = P„T�:N , d�:N j�” = P„d�:N jT�:N , �”P„T�:N j�” = P„d�:N jT�:N , �”P„T�:N ”,

where the last step comes from the fact that the clicks trains are independent of the discounting parameter � used by
the decision-makingmodel8. From there, we remark that the choice data are conditionally independent on the clicks
stimulus and the discounting parameter. Thus,

P„d�:N jT�:N , �” =
NÖ
k=�

P„dk jTk , �”.

Therefore we can rewrite Eq. (25) as:

P„� jD” / P�„�”
NÖ
k=�

P„dk jTk , �”. (26)

We use uniform priors for �, over a finite interval »�, a…. In this context, the problem of computing the posterior
distribution of � reduces to assessing the likelihoods of the decision data on each trial, P„dk jTk , �” (� � k � N ), for a
range of �-values spanning the interval »�, a…. In practice, we picked a = ��when fitting the linearmodel and a = ��when
fitting the nonlinear model. Finally, note that for numerical stability reasons, our algorithms actually sum log-likelihood
values, as opposed tomultiplying probability values. Relegating the �-independent prior into a normalization constant
C , Eq. (26) becomes, in the log-domain:

log P„� jD” = C ý
NÕ
k=�

log P„dk jTk , �”, � 2 »�, a…. (27)

E | MINIMIZING 0/1-LOSS IN A BERNOULLI RANDOM VARIABLE
Consider a simple stochastic binary decision-making model in which we ignore the specifics of evidence sources, as
in Pesaran and Timmermann (1992). We that in this case the 0/1-loss function also leads to biased estimates. This
result has been pointed out in previous work in which parameter fitting results have been compared between Bernoulli
randomvariables fitwith the 0/1-loss function as opposed tomaximum likelihood estimators (Friedman, 1997; Friedman
et al., 2001).

Consider a Bernoulli random variable B� with success probability p� generating the reference choices, and the
fit Bernoulli model B� with success probability p�. Minimizing the log-likelihood loss function recovers p�� = p� in the
limit of a large number of trials N !1: In this limit, given p�, we have that the expected loss measured by the negative
log-likelihood is

ÝLLL „d jp�” = � »p� log p� ý „� � p�” log„� � p�”… , (28)

which is minimized9 at p�� = p�, the mean of B�. Thus, the parameter from the reference model is recovered, as the

8We remind the reader that we operate a distinction between the discounting parameter of the decisionmaker and the hazard rate used to produce the data.9Note Eq. (28) is the cross-entropy betweenB� andB� .
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Bernoulli random variable satisfies the requirements for theMLE to be consistent (Wald, 1949).
On the other hand, if we fit the parameter p� byminimizing the expected 0/1-loss function, in the limit of N !1

trials, the expected loss is

ÝL���„d jp�” = � � P„B� = B
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10,000 trials. The fitting algorithm NNf@1NP@1NPNiP1W@VSRn1PVNkglementatioVSRn1PVofPNiP1Wt1YXRn1PVBayesi@VSRn11W@pproachXRn1PVleadHalgorithtogorithequatioVS@WN@TPNUSU@VTYVNRPS@tm@[H�I]tjOf1PI]tj*P@WOf11S@WN@T1@TPNSPT@VSRRNRT1@tm@[H�I]tjabovePHThe@WN@Pd@[VPNSPT@VSRN1RW@t1YNT1@SI]tjWhenX@WNYWP1@tf@1NPR@P@PPd@[VPNSPT@VVRNSVNPt1YNT1@S
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F IGURE 6 Bias in parameter recovery as a function of sensory noise. A: Recovered discounting parameter from the
fits as a function of the reference discounting parameter used to produce the initial decision data. Top and bottom rows
are reproductions of Fig. 5 while themiddle row is for an intermediate level of sensory noise. The actual fit parameters
(golden) were smoothed (green) in order to compute the bias in panelB for the reference discounting parameters
indicated by the red dotted lines. The black diagonal indicates the identity line, which would correspond to perfect
parameter recovery. B: Bias in parameter recovery Eq. (29) as a function of sensory noise, for the twomodel pairs (L-L in
blue andNL-NL in golden).
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Although the confidence intervals do not seem to contain the true parameter value, are the mismatches statistically significant in
Figure 4CD? That is, are the parameter values significantly greater than the true parameter value?
Wewould like to note that thewhiskers of each box in Fig. 4C,D do not represent confidence intervals. Instead, they
represent the interval of values that are not considered outliers. More specifically, if q�, q� are the first and third
quartiles respectively, then the whiskers define the interval: »q� � �.� � „q� � q�”, q� ý �.� � „q� � q�”….
Instead of testing the hypothesis that the MAP estimates are different than the �true value, we provide a summary
statistic for the training datasets of size 500 trials. We have added the following sentences to the end of section 6: For
reference datasets of size 500, 98% of the 500MAP estimates in the L-NL fits lie strictly above 
true, versus 50.4% for
the corresponding L-L fits. Similarly, 86.6% of the estimates in the NL-L fits lie strictly below htrue, versus 44.2% for the
corresponding NL-NL fits. We believe this is more informative than a p-value.
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