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Abstract. We use optimal rational approximations of projection data col-
lected in X-ray tomography to improve image resolution. Under the assump-
tion that the object of interest is described by functions with jump discontinu-
ities, for each projection we construct its rational approximation with a small
(near optimal) number of terms for a given accuracy threshold. This allows us
to augment the measured data, i.e., double the number of available samples in
each projection or, equivalently, extend (double) the domain of their Fourier
transform. We also develop a new, fast, polar coordinate Fourier domain algo-
rithm which uses our nonlinear approximation of projection data in a natural
way.

Using augmented projections of the Shepp-Logan phantom, we provide
a comparison between the new algorithm and the standard Filtered Back-
Projection (FBP) algorithm. We demonstrate that the reconstructed image
has improved resolution without additional artifacts near sharp transitions in
the image.

1. Introduction

As perceptively noted in [29], despite the development of many new algorithms
for the inversion of the Radon transform, the quality of image reconstruction (in e.g.,
X-ray tomography) has not improved noticeably when compared with the output
of the traditional Filtered Back-Projection (FBP) algorithm (see, for example [28]).
This lack of improvement in image quality may be traced to the fact that the signal
model for collected data is subject to the Nyquist sampling criterion. Since we are
typically interested in reconstructing piece-wise continuous objects, the collected
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a (periodic) signal allows us, in principle, to recover its entire Fourier series from
a small number of samples. In practice, even though the presence of noise limits
such a recovery, a rational model still outperforms models based on the Nyquist
sampling criterion. For objects with a limited number of isolated singularities,
optimal rational approximations of projection data yield a significant improvement
in resolution without introducing artifacts near singularities.











RATIONAL APPROXIMATIONS FOR TOMOGRAPHIC RECONSTRUCTIONS 7

+

+









RATIONAL APPROXIMATIONS FOR TOMOGRAPHIC RECONSTRUCTIONS 11

0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.10 0.15 0.20 0.25
-7

-6

-5

-4

-3

-2

0.10 0.15 0.20 0.25
-7

-6

-5

-4

-3

-2

(a) (b) (c) (d)

Figure 4.1. Rational approximation of a projection in the vicinity
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6. Numerical examples

We now analyze the impact on image resolution of the rational approximation of
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Figure 6.2. A 1024 × 1024 reconstructed image of the Shepp-
Logan phantom via the FBP algorithm using projections (with
twice as many samples) generated by near optimal rational ap-
proximation (a) and the corresponding error (b). Gray scales are
the same as in Figure 6.1 which should be used for comparison.
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Figure 6.3. A 1024×1024 reconstructed image via the PQI algo-
rithm of Section 5 (a) and the corresponding error (b). The gray
scales are the same as in Figures 6.1 and 6.2, which should be used
for comparison. The two boxes in (a) outline areas of the recon-
structed image on which we zoom to examine the reconstruction
at a pixel level.
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Figure 6.8. Comparison of errors of 1024× 1024 reconstructions
in Figure 6.2 (via the standard FBP applied to noiseless data) (a)
and the same data with added Gaussian noise (b). We observe
that the Gaussian noise creates a speckle component in the error.
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