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Impact of correlated information on pioneering decisions
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Normative models are often used to describe how humans and animals make decisions. These models treat
deliberation as the accumulation of uncertain evidence that terminates with a commitment to a choice. When
extended to social groups, such models often assume that individuals make independent observations. However,
individuals typically gather evidence from common sources, and their observations are rarely independent. Here
we ask: For a group of ideal observers who do not exchange information, what is the impact of correlated
evidence on decision accuracy? We show that even when agents are identical, correlated evidence causes decision
accuracy to depend on temporal decision order. The first decider is less accurate than a lone observer, and
early deciders are less accurate than late deciders. These phenomena occur despite the fact that the rational
observers use the same decision criterion, so they are equally confident in their decisions. We analyze discrete
and macroscopic evidence-gathering models to explain why the first decider is less accurate than a lone observer
when evidence is correlated. Pooling the decisions of early deciders using a majority rule does not rescue
accuracy results in only a modest accuracy gain. Although we analyze an idealized model, we believe that
our analysis offers insights that do not depend on exactly how groups integrate evidence and form decisions.
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I. INTRODUCTION

Most organisms and many computational algorithms make
decisions based on a sequence of noisy observations of the en-
vironment [1]. Normative models that describe how evidence
should be integrated to make the best choice are central to
our understanding of such decisions [2]. When an observer
needs to choose between alternatives, accumulating evidence
refines their perceived probability of the truth of each alter-
native. Decision policies often prescribe a threshold on the
accumulated evidence in order to balance the speed and ac-
curacy of decisions [3,4]. These theories have been developed
and validated over decades in experiments with humans and
other animals [5–9]. However, most previous work was fo-
cused on individual decision makers, and less is known about
groups of observers who make choices based on streams of
evidence [10,11].
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Each member of a social group often needs to choose
between the same alternatives based on a combination of cor-
related and independent observations [12
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the impact of common observations [16], and nonnormative
decision sharing [28].

B. Accumulation of correlated measurements

We analyze the impact of correlated information on the ac-
curacy of the decisions of a community of N independent and
isolated agents. At each time step, t , every agent, i, makes an
observation (measurement), ξ i

t ∈ �, and updates their private
belief, yi

t , according to Eq. (1). However, an individual agent
does not know whether others have made decisions or what
those decisions were, in contrast to social network models
studied in the past [17,22–32]. This could be a model of a
sample of voters, each of whom does not know the others, or
traders deciding to buy or sell a stock without tipping their
hand.

To model correlated measurements, we assume that on
each time step all agents make an identical observation with
probability c. An identical observation means that ξ i

t = ξt for
all agents, i = 1, . . . , N , where ξt is a single sample from
the measurement distribution, f±(ξ ). With probability 1 − c
agents make independent observations during a time step, and
the N measurements, ξ i

t , are sampled independently from the
distribution f±(ξ ). This is equivalent to having N private,
independent sources of evidence, each accessible to a single
agent, and one common evidence source accessible to all
agents (see the Discussion for less restrictive assumptions).
Therefore, the belief of each agent evolves according to

yi
t = yi

t−1 + (1 − χt )LLR
(
ξ i

t

) + χt LLR(ξt ), (2)

where χt are i.i.d. Bernoulli random variables each with
parameter c. When c = 1 agents make only common ob-
servations, and when c = 0 agents make only independent
observations. As c increases from zero, each observation is
more likely to be common, and the overall evidence becomes
more correlated.

Each agent makes observations until their belief, yi
t ,

reaches one of the thresholds, θ±, at which point they make the
corresponding decision, H±. For simplicity we henceforth as-
sume the thresholds are symmetric about zero, i.e., θ± = ±θ ,
with θ > 0. We denote the decision time of agent i by Ti, and
assume that decisions are immutable. Thus, decision times are
uniquely defined, and only undecided agents continue to make
observations.

Importantly, each agent is isolated and does not observe
others’ decisions or their decision state (decided or unde-
cided), in contrast with [17,22]. Agents do not know whether
an observation is common or private, and each uses the evi-
dence they have collected to make the best possible decision
based on their belief (LLR) given by Eq. (2).

We ask how the accuracy of an agent’s decision depends
on the order in which the decision is made. In particular, how
accurate is the first decider? If multiple agents make a decision
at first-decision time, the “first” decider is chosen randomly
with equal probability from that group. The probability of a



MEGAN STICKLER et al. PHYSICAL REVIEW RESEARCH 5, 033020 (2023)



IMPACT OF CORRELATED INFORMATION ON … PHYSICAL REVIEW RESEARCH 5, 033020 (2023)

selected with equal probability from all agents in the group
prior to evidence accumulation. To do so, we write the log-
likelihood ratio (LLR) associated with the probability the first
decider makes the correct choice as a sum of two terms: One
term is the LLR of a randomly selected agent at decision time,
while the second incorporates the condition that this agent
is the first decider. We show that the first term’s magnitude
equals θ
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Setting thresholds to ±θ = ±2, the belief of any undecided
agent, i, must equal yi

t = ±1, at any odd time, and yi
t = 0 at

any even time. Thus, the stochastic process governing the ev-
idence accumulation of undecided agents resets to 0 (renews)
every two time steps. If T is the time of the first decision, then

P(d



MEGAN STICKLER et al. PHYSICAL REVIEW RESEARCH 5, 033020 (2023)







IMPACT OF CORRELATED INFORMATION ON … PHYSICAL REVIEW RESEARCH 5, 033020 (2023)

where ηc and η1−c
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