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Near a nonresonant, elliptic fixed point, a symplectic map can be transformed into Birkhoff normal
form. In these coordinates, the dynamics is represented entirely by the Lagrangian ‘‘frequency map’’
that gives the rotation number as a function of the action. The twist matrix, given by the Jacobian
of the rotation number, describes the anharmonicity in the system. When the twist is singular the
frequency map need not be locally one-to-one. Here we investigate the occurrence of fold and cusp
singularities in the frequency map. We show that folds necessarily occur near third order resonances.
We illustrate the results by numerical computations of frequency maps for a quadratic, symplectic
map. © 2003 American Institute of Physics.@DOI: 10.1063/1.1529450#
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The dynamics in the neighborhood of a linearly stable
periodic orbit of a Hamiltonian flow or fixed point of a
symplectic map can be elucidated by consideration o
their Birkhoff normal forms. The normal form has action
variables, J, which are formal invariants when the rota-
tion vector, v, of the elliptic orbit 408C448.6(408C448.
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the numerator of the rational expression for dett0 from ~29!
and set it to zero, since this eliminates infinities which a
unimportant in drawing the zeros. We show examples
these curves in Fig. 10 for the same parameter va
as Fig. 9.

In general the expression for the twistless bifurcat
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nances, poles of order two at the~210! and ~120! resonances
and poles of order one at the~201!, ~021!, ~301! and ~031!
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