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Near a nonresonant, elliptic fixed point, a symplectic map can be transformed into Birkhoff normal
form. In these coordinates, the dynamics is represented entirely by the Lagrangian ‘‘frequency map’’
that gives the rotation number as a function of the action. The twist matrix, given by the Jacobian
of the rotation number, describes the anharmonicity in the system. When the twist is singular the
frequency map need not be locally one-to-one. Here we investigate the occurrence of fold and cusp
singularities in the frequency map. We show that folds necessarily occur near third order resonances.
We illustrate the results by numerical computations of frequency maps for a quadratic, symplectic
map. © 2003 American Institute of Physics.@DOI: 10.1063/1.1529450#
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The dynamics in the neighborhood of a linearly stable
periodic orbit of a Hamiltonian flow or fixed point of a
symplectic map can be elucidated by consideration o
their Birkhoff normal forms. The normal form has action
variables, J, which are formal invariants when the rota-
tion vector, v, of the elliptic orbit 408C448.6(408C448.
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an elliptic fixed point. If we assume there are no low-ord
resonances, the map can be transformed to Birkhoff form
some finite order in a power series expansion in the actio
We compute the twist and show that it generally vanis
near several resonances. We compare the calculations o
twist with numerical calculations of the frequency map bas
on Laskar’s algorithm20,21 to observe the folds and cusp
Finally we use the technique of Meiss22 to estimate the vol-
ume of the elliptic region in the neighborhood of the fix
point.

II. VANISHING TWIST

Since the frequency map is generated byS through
V(J)5DS, this map is an example of a ‘‘Lagrangian map
Recall that ad-dimensional submanifold of a symplect
manifold is Lagrangian if the symplectic form vanishes ide
tically for any pair of tangent vectors to the submanifo
The submanifoldL5$(u,J):u50% is Lagrangian, and its
image under the Birkhoff normal form~1!, f (L)5$(u,J):u
5DS(J)%, is therefore also Lagrangian. Since this Lagran
ian manifold is a graph overJ, we can trivially project out
the J direction, defining
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Since the multipliers come in reciprocal pairs, we can alw

choosevkP(0,1
2), for then the reciprocal multiplier corre

sponds to negative rotation number. With this conventi
the traces,rk52 cos 2pvk and the residues,

Rk5sin2 pvk5 1
4 umk21u2, ~9!

are one-to-one invk .
s

,

A. Kinematics of resonances

In the neighborhood of an elliptic fixed point, a map c
be transformed into the Birkhoff normal form~1! to arbitrary



to
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Do
m•v5n. ~11!

Thus, in frequency space, a resonance corresponds
codimension-one plane, and the set of all resonances is
set of planes with integral normal vectors,m, and rational
intercepts with the coordinate axes. Thus, the collection
resonances can be labeled by vectors (m,n)PZd1
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points, we start with that assumption to construct our
ample. In the Appendix we will show how to obtain our ma
from Moser’s general quadratic map.

We will use a Lagrangian generating function to wr
our map in ‘‘standard’’ form,

L~x,x8!5K~x82x!2V~x!, ~16!

whereK is the ‘‘kinetic’’ and V is the ‘‘potential’’ energy.
The map is generated via the one formy8dx82ydx5dL,
giving

y52
]L

]x
5DK~x82x!1DV~x!,

~17!

y85
]L

]x8
5DK~x82x!.

If this map has a fixed point, then we can shift it to t
origin. The new generating function then has no linear ter
in V.

First we consider the quadratic Lagrangian when ther
a strongly-stable fixed point at the origin. In this case co
dinates in phase space can be chosen so that the map
real block diagonal normal form~see, e.g., Ref. 2!. Such a
map is generated by a quadratic Lagrangian of the form
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A. Island size

The map~21! has rich dynamical behavior which ha
only been partially explored. One experiment that illustra
some of the phenomena is the computation of the size of
stable island around the elliptic fixed point. For the tw
dimensional case this experiment was first performed
Hénon.30 Those calculations clearly showed the strong
pendence of the size of the island on the residue, an
particular that it shrinks to zero at thev5 1

3 resonance.
Hénon used the length of the portion of the symmetry li
that contains bounded orbits as an estimate for the area o
island. The actual area of the island can also be compute
s
e

-
y
-
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he
by

‘‘counting pixels’’ that contain trapped initial conditions,32 or
by the more efficient and precise method of exit tim
distributions.22

The quadratic map~21! does have reversing symmetr
with a fixed set$x50%. Thus, by analogy with He´
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sector the boundary of the island is estimated by conside
an orbit as trapped if it does not leave the cube of boun
orbits for 1000 iterations. The transition point on each ray
found by bisection. This is much more efficient than cou
ing pixels would be, particularly for large islands, though
does rely on the assumption of star convexity.

We observe that the island size is strongly influenced
the low order resonances. In the left panel, the area shrink
zero near and outside the~301! and ~031! resonances, while
in the right panel the~210! resonance is most effective
Many of the resonances shown in Fig. 6 are visible in p
ticular in the right picture. The fact that the~110! resonance
increases the island size~instead of decreasing it! is related
to the fact that under the strong-stability assumption,
map is diagonalizable whenv1!v2 ; generically, this would
not be the case, and the~110! resonance might have a stron
effect in the opposite way.

For four-dimensional maps an explicit volume calcu
tion by counting ‘‘voxels’’ is prohibitively expensive; how
ever, the exit time distribution technique22 is much more ef-
ficient and can still be carried out. To do this, we choos
hypercubeC5$uxu,uyu,2% that appears to contain all of th
bounded orbits. Moser29 gives a larger box that contains a
bounded orbits, but from our numerical experiments we
that for our parametersC is sufficient. The incoming set forC
is the portion of the cube that is not in its image,I
5C\ f (C). The exit time,t1(z) for a pointzPI, is the num-
ber of iterations until it leavesC, and the average exit time
^t1&I , is the average over all points inI. If we compute this
average, then the volume of the accessible region is give
^t1&Im(I). Thus the volume of trapped orbits ism(C)
2^t1&Im(I), wherem is the measure of the respective se

The exit time computation is realized as a Monte Ca
simulation. First pick a random point in the cubeC. If its
preimage is inC, then it is not inI, and it is discarded;
otherwise, determine the exit time of the point. The aver
over all such points iŝt1&I . The probabilityPI of a point to
be in I givesm(I)'PIm(C). In this Monte Carlo realization
statistical fluctuations can give an accessible volume slig
larger thanm(C)544. In this case the trapped area is set
be 0.

Typical results are shown in Fig. 8, for the same para
eters as in Fig. 7. The results are qualitatively similar to
previous one, though the volume drops more dramatic
near higher order resonances than the area on the symm
plane does, presumably because volume has sampled
regions of phase space.

B. Normal form

To transform~21! to Birkhoff normal form it is conve-
g
d

s
-

y
to

r-

r

-

a

e

by

.

e

ly

-
e
ly
try
ew



c
ov
p

Do
For certain terms this will givem15m250, in which
case the corresponding term can never be removed by a
ordinate transformation. The coefficients of these irrem
able terms are called the twists. In the present case u
degree 3 they are given byz1 , z1(z1z̄1), z1
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the numerator of the rational expression for dett0 from ~29!
and set it to zero, since this eliminates infinities which a
unimportant in drawing the zeros. We show examples
these curves in Fig. 10 for the same parameter va
as Fig. 9.

In general the expression for the twistless bifurcat
curves in parameter space are quite complicated. Howe
the poles in dett0 that occur at low-order resonances a
e
f

es

er,

helpful in understanding the behavior, just as they were he
ful in the two-dimensional case.3



rd
nances, poles of order two at the~210! and ~120! resonances
and poles of order one at the~201!, ~021!, ~301! and ~031!
resonances. The coefficients of the second and third o
poles are always negative.
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close to the two neighboring codimension-two points cor
sponding to vanishing of each column oft0 , e.g., nearR
5(0.35,0.89) in Fig. 11. For example, if we allowa30 to
vary from our standard choice of equal parameters, we
that the matrix t0 vanishes identically when R
'(0.348 41,0.896 33) anda3051.526 63a21. This corre-
sponds to a simultaneous ‘‘crossing’’ of the three curves
zero twist matrix entries; this is not a persistent crossing—
corresponds to the vertex of the cone defined by the van
ing of the determinant of a symmetric matrix.

B. Frequency maps

In this section we will obtain some frequency maps
~21! using Laskar’s method.21 The basic idea is to approxi
mately compute the frequencies for a particular initial co
-
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a FFT for this because we need very high accuracy inV1 . To
find the second frequency,V2 , we remove the first fre-
quency from the signal by forming wt5v t

2e22p iV1tF(v;V1). Then F(w;V2) is maximized. Fre-
quencies are only defined up to unimodular transformatio
When changing the parameters it is therefore possible
s.
at

the largest peak appears at a different linear combination
avoid such discontinuities in the frequency map we us
continuation method that tries to find local maxima near
previously found maxima.

In Fig. 12 parameters are chosen for the two panels
opposite sides of the dett050 curve. Here the top pane



shows that the twist columns are nearly antiparallel, and
 in



c

a-

irt

ic

a
Z.

ing

of

il

D

3/

ing
r ] T J 
 / F B e r l i n 9 5 ..
3R. Moeckel, ‘‘Generic bifurcations of the twist coefficient,’’ Ergodi
Theor. Dyn. Syst.10~1!, 185–195~1990!.

4H. R. Dullin, J. D. Meiss, and D. Sterling, ‘‘Generic twistless bifurc
tions,’’ Nonlinearity13, 203–224~1999!.

5J. P. van der Weele, T. P. Valkering, H. W. Capel, and T. Post, ‘‘The b
of twin Poincare´–Birkhoff chains near 1:3 resonance,’’ Physica A153,
283–294~1988!.

6J. P. van der Weele and T. P. Valkering, ‘‘The birth process of period
orbits in non-twist maps,’’ Physica A169, 42–72~1990!.

7T. P. Valkering and S. A. Vangils, ‘‘Bifurcation of periodic-orbits near
frequency maximum in near-integrable driven oscillators with friction,’’
Angew. Math. Phys.44~1!, 103–130~1993!.
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