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Twist singularities for symplectic maps
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Near a nonresonant, elliptic fixed point, a symplectic map can be transformed into Birkhoff normal
form. In these coordinates, the dynamics is represented entirely by the Lagrangian “frequency map”
that gives the rotation number as a function of the action. The twist matrix, given by the Jacobian
of the rotation number, describes the anharmonicity in the system. When the twist is singular the
frequency map need not be locally one-to-one. Here we investigate the occurrence of fold and cusp
singularities in the frequency map. We show that folds necessarily occur near third order resonances.
We illustrate the results by numerical computations of frequency maps for a quadratic, symplectic
map. © 2003 American Institute of Physic§DOI: 10.1063/1.1529450

The dynamics in the neighborhood of a linearly stable

periodic orbit of a Hamiltonian flow or fixed point of a

symplectic map can be elucidated by consideration of

their Birkhoff normal forms. The normal form has action

variables, J, which are formal invariants when the rota-
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an elliptic fixed point. If we assume there are no low-order
resonances, the map can be transformed to Birkhoff form to
some finite order in a power series expansion in the actions.
We compute the twist and show that it generally vanishes
near several resonances. We compare the calculations of the
twist with numerical calculations of the frequency map based
on Laskar's algorithrf??* to observe the folds and cusps.
Finally we use the technique of Mefégo estimate the vol-
ume of the elliptic region in the neighborhood of the fixed
point.

II. VANISHING TWIST

Since the frequency map is generated ®ythrough
QO (J)5DS, this map is an example of a “Lagrangian map.”
Recall that ad-dimensional submanifold of a symplectic
manifold is Lagrangian if the symplectic form vanishes iden-
tically for any pair of tangent vectors to the submanifold.
The submanifoldL5{¢ ,J)= 50} is Lagrangian, and its
image under the Birkhoff normal forrtl), f(L)5{¢ ,J)=
5DS(J)}, is therefore also Lagrangian. Since this Lagrang-
ian manifold is a graph ovel, we can trivially project out
the J direction, defining
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w5e?mk  k51,..4d. (8) A Kinematics of resonances

Since the multipliers come in reciprocal pairs, we can always ~ In the neighborhood of an elliptic fixed point, a map can
choosewy e (0,3), for then the reciprocal multiplier corre- be transformed into the Birkhoff normal forft) to arbitrary

sponds to negative rotation number. With this convention,
the tracesp 52 cos 2rw, and the residues,
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are one-to-one iy .
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Thus, in frequency space, a resonance corresponds to a
codimension-one plane, and the set of all resonances is the
set of planes with integral normal vectors, and rational
intercepts with the coordinate axes. Thus, the collection of
resonances can be labeled by vectarsn() e 291
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points, we start with that assumption to construct our ex-
ample. In the Appendix we will show how to obtain our map
from Moser’s general quadratic map.

We will use a Lagrangian generating function to write
our map in “standard” form,

L(x,x")BK(x'2x)2V(X), (16)

whereK is the “kinetic” and V is the “potential” energy.
The map is generated via the one fogdx’ 2ydx5dL,

giving
aL
y52 a—XBDK(x’Zx)lDV(x),

L 7
y SWBDK(X 2X).

If this map has a fixed point, then we can shift it to the
origin. The new generating function then has no linear terms
in V.

First we consider the quadratic Lagrangian when there is
a strongly-stable fixed point at the origin. In this case coor-
dinates in phase space can be chosen so that the map is in
real block diagonal normal fornfsee, e.g., Ref.)2 Such a
map is generated by a quadratic Lagrangian of the form



A. Island size “counting pixels” that contain trapped initial conditiori$ or

The map(21) has rich dynamical behavior which has by t.he .more; efficient and precise method of exit time
only been partially explored. One experiment that illustrateglistributions” _ _
some of the phenomena is the computation of the size of the 1he quadratic mag21) does have reversing symmetry
stable island around the elliptic fixed point. For the two-With a fixed se{x50}. Thus, by analogy with He
dimensional case this experiment was first performed by
Henon® Those calculations clearly showed the strong de-
pendence of the size of the island on the residue, and in
particular that it shrinks to zero at the53 resonance.
Henon used the length of the portion of the symmetry line
that contains bounded orbits as an estimate for the area of the
island. The actual area of the island can also be computed by



sector the boundary of the island is estimated by considering
an orbit as trapped if it does not leave the cube of bounded
orbits for 1000 iterations. The transition point on each ray is
found by bisection. This is much more efficient than count-
ing pixels would be, particularly for large islands, though it
does rely on the assumption of star convexity.

We observe that the island size is strongly influenced by
the low order resonances. In the left panel, the area shrinks to
zero near and outside th{801) and (031) resonances, while
in the right panel the(210) resonance is most effective.
Many of the resonances shown in Fig. 6 are visible in par-
ticular in the right picture. The fact that tH&@10 resonance
increases the island siZistead of decreasing)its related
to the fact that under the strong-stability assumption, our
map is diagonalizable whan, ¥ w,; generically, this would
not be the case, and tti&10) resonance might have a strong
effect in the opposite way.

For four-dimensional maps an explicit volume calcula-
tion by counting “voxels” is prohibitively expensive; how-
ever, the exit time distribution technictfds much more ef-
ficient and can still be carried out. To do this, we choose a
hypercubeC5{|x|,|y| , 2} that appears to contain all of the
bounded orbits. Mosé&t gives a larger box that contains all
bounded orbits, but from our numerical experiments we see
that for our parameteGis sufficient. The incoming set fa@
is the portion of the cube that is not in its image,
5C\f(C). The exit timet*(z) for a pointze I, is the num-
ber of iterations until it leave§, and the average exit time,
(t1),, is the average over all points In If we compute this
average, then the volume of the accessible region is given by
(tY),u(1). Thus the volume of trapped orbits ig(C)
2(t1),u(1), whereu is the measure of the respective sets.

The exit time computation is realized as a Monte Carlo
simulation. First pick a random point in the cuBe If its
preimage is inC, then it is not inl, and it is discarded,
otherwise, determine the exit time of the point. The average
over all such points iét1), . The probabilityP, of a point to
be inl givesu(1)~P,u(C). In this Monte Carlo realization,
statistical fluctuations can give an accessible volume slightly
larger thanu(C)54%. In this case the trapped area is set to
be 0.

Typical results are shown in Fig. 8, for the same param-
eters as in Fig. 7. The results are qualitatively similar to the
previous one, though the volume drops more dramatically
near higher order resonances than the area on the symmetry
plane does, presumably because volume has sampled new
regions of phase space.

B. Normal form

To transform(21) to Birkhoff normal form it is conve-



For certain terms this will givan;5m,50, in which
case the corresponding term can never be removed by a co-
ordinate transformation. The coefficients of these irremov-
able terms are called the twists. In the present case up to
degree 3 they are given kyy, z:(z121), z1
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the numerator of the rational express|0n for d)di'om (29) heIpfuI in Understanding the behavior, jUSt as they were help-
and set it to zero, since this eliminates infinities which areful in the two-dimensional cask.
unimportant in drawing the zeros. We show examples of
these curves in Fig. 10 for the same parameter values
as Fig. 9.
In general the expression for the twistless bifurcation
curves in parameter space are quite complicated. However,
the poles in de]to that occur at low-order resonances are



nances, poles of order two at tli210) and(120) resonances
and poles of order one at th@01), (021), (301) and (031)
resonances. The coefficients of the second and third order
poles are always negative

Proof



close to the two neighboring codimension-two points corre-
sponding to vanishing of each column7o(§, e.g., neaR
5(0.35,0.89) in Fig. 11. For example, if we alloag, to
vary from our standard choice of equal parameters, we find
that the matrix o vanishes identically whenR
~(0.34841,0.896 33) and3;51.526 62&,,. This corre-
sponds to a simultaneous “crossing” of the three curves of
zero twist matrix entries; this is not a persistent crossing—it
corresponds to the vertex of the cone defined by the vanish-
ing of the determinant of a symmetric matrix.

B. Frequency maps

In this section we will obtain some frequency maps for
(21) using Laskar's methotf The basic idea is to approxi-
mately compute the frequencies for a particular initial con-
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a FFT for this because we need very high accurady4inTo  the largest peak appears at a different linear combination. To
find the second frequency),, we remove the first fre- avoid such discontinuities in the frequency map we use a
quency from the signal by forming w,5uv; continuation method that tries to find local maxima near the
2e22mMNE(y;Q,). Then F(w;Q,) is maximized. Fre- previously found maxima.

quencies are only defined up to unimodular transformations. In Fig. 12 parameters are chosen for the two panels on
When changing the parameters it is therefore possible thapposite sides of the d,,9650 curve. Here the top panel



shows that the twist columns are nearly antiparallel, and in
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