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Chemical and elastic effects on isostructural phase diagrams: The c,-G approach
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Numerous theoretical models of temperature-composition phase diagrams of isostructural binary
alloys are based on the configurational Ising Hamiltonian in which the many-body configurational
interaction energies c,'"' are taken as (volume-independent) constants (the "c,-only" approach). Oth-
er approaches postulate phenomenologically composition-dependent but configuration- (o-) in-

dependent elastic energies. We "c,
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E=J()N+ J( g S"+J2 g S"S' '

points pairs

g(i)g(j )g(k)+J ~ g(i)g( j)g(k)g(~)+ 4
triangles tetrahedra

(2.2}

and

'9& —'90 =S '(i) (i) (i) (2.3a)

where the interaction parameters I J] can in general be
volume dependent. Equivalently, one can use the rela-

tions between the spin and the occupation variables

clusters at the domain
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d bE(o, V)= g g„(o) bE(n, V)=0,
n

whereas the bulk modulus of the system would be

(2.10)

dered crystals, where each local arrangement occurs in
the alloy with the frequency g„(o.). Thus, at any state of
order o of the system (ordered or not), the equilibrium
volume V,q(x ) is given by the minimum condition

pure crystal A~ A from its equilibrium structure
with molar volume V~ to the molar volume V appropri-
ate to the final structure of A~ 8 . Do the same for
the pure crystal B~ B, changing it from the volume

Vz to V. Since a deformation of the equilibrium struc-
tures of A and 8 is involved in this step, it requires an in-
vestment of elastic energy. For a compound AM 8 at
a volume V, this energy investment is simply

d d2
B(o, V) = V bE(o, V) = g g„(o) V bE(n, V)

dV
„

dV

= g g„(cr)B(n,V), (2.11)

bF[N„,Ntt', V]= (E[A; V] E[A—; V„])
N

(E[B;V] E[B—, Vtt ] ) .
N~

(3.1)

i.e., a combination of the bulk moduli B(n, V) of the cor-
responding ordered structures.

Considering a (canonical) ensemble of samples of given
concentration x, the probability of finding a given or-
dered structure becomes a thermal average

P„(x,T)=(g„(o) ), (2.12)

and the excess enthalpy of mixing' at the equilibrium
volume V,q becomes

bH(x, T)= g bE(n, V, )P„(x,T) . (2.13)

The thermal average Eq.
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Such an ordered phase is said to be "stable against
disproportionation into its constituents" (bH' '&0) if
its negative chemical energy c.' ' overwhelms the positive
elastic energy at equilibrium bF[N„,N~; V ] invested in
deforming its constituents; otherwise this phase is "unsta-
ble towards disproportionation. "

Using Eqs. (2.13) and {3.3), we can now describe the
mixing enthalpy of a disordered (D) alloy which exhibits
all local atomic environment characteristics of all ordered
arrangements [n ) as

bH'D'(x, T ) = g P„(x,T )e'"'+ 6(x, T), (3.5)

where, from Eq. (3.3) and (2.13) the average elastic energy
of the alloy is

G(x, T)= g P„(x,T)bF[N„,Ntt', V(x)]
n

(3.6)

B. Conditions and exact form of h,E(cr, V).

It is possible to derive a general expression for the elas-
tic energy G(x ) of an alloy in terms of simple measurable
quantities if one assumes that the equilibrium molar
volume depends on composition but not on the state of or
der (the trivial effect of thermal expansion of the volume
is not included here, but can be easily incorporated in the
results below). This assumption is the traditional corner-
stone of structural chemistry, ' where an even stronger
statement is made: Each atom can be characterized by a
radius (atomic, metallic, covalent, van der Waals, etc. ),
approximately independent of its chemical environment.
This assumption seems to be supported by numerous ex-
perimental observations; some examples are compiled in
Table I. In practice we can accept small volume changes
from Vo to V& attendant upon
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TABLE I. Data (Ref. 34) on molar volumes of intermetallic phases at room temperature showing that for fixed stoichiometry the
volume depends only weakly on the type of order.

Formula

AgCd

Ag3Pt

Space group
(type or phase)

Pm 3m
P63/mme
Im 3m

Fm 3m
Pm 3m

Molecular
volume
(A')

36.97
37.28
36.76

59.37
59.09

Formula

AuLi

Au3Mn

Space group
(type or phase)

Pm 3m
tetragonal
orthorombic

orthorombic
tetragonal

Molecular
volume
(A')

29.73
29.53
29.66

66.73
66.41

AgPt3 Pm 3m(y)
cubic (y')

59.32
60.24

AuMn I4/mmm
orthorombic

32.44
32.95

Ag2S P2(/n
Im 3m

56.71
57.57

AuNb3 Pm 3m
Im 3m

70.30
70.58

Ag2Se P222)
tetragonal

59.91
59.27

AuTe2 C2/m
Pma

80.54
81.33

AgTe P4/mmm(AuCu)
P4/mmm(TiCu)

34.33
34.23

AuTi Pmma
P4/nmm

33.26
33.52

AgZn Im 3m
Pm 3m

31.44
31.43

AuV, Pm 3n
Im 3m

57.96
57.87

AsCu3 I43d
tetragonal

55.49
56.09

Au3Zn Abam

I4~ /acd
65.02
65.14

Au3Be

Au3Cd

orthorombic
tetragonal

tetragonal
P63/mmc

58.73
57.75

70.05
70.09

Au&Zn3

CuBe

Ibam
Pmc2 i

Pm 3m
tetragonal

255.2
255.1

19.75
19.77

AUCd Pm

Pm
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or

Q f x(1—x }dx = f G(x )dx,
0 0

Q=3f x(1—x)Z(x)dx .
0

(3.13)

(3.14)

e'"'=bH'"' —G(X„). (3.15)

This simple result reveals the tacit relation between ther-
modynamic energies (e.g., hH'"') and critical tempera-
tures: Since order-disorder transformations occuring at a

Equations (3.9) and (3.10) are our central results and
determine the thermodynamic behavior of the alloy.
They have the following simple interpretation: The first
term on the right-hand side of Eq. (3.9) represents the en-

ergy of an alloy whose volume V equals that of its constit-
uents (V„and Vs}, i.e., for the uncommon case of a
lattice-matched alloy or one that has a vanishing bulk
modulus. The configuration-dependent (but volume- and
composition-independent) chemical energies e,

'"' are sim-

ply related to the familiar Ising-type spin-flip substitution
energies on this fixed lattice [e.g., Eq. (2.8)]. They mea-
sure the strength of the many-body interactions between
atoms (or spins) within the interaction range considered.
The only reason that the first term of Eq. (3.9) changes
with composition is statistical: Different alloy composi-
tions have different distributions of species n, [given by
g„(o)], but e'"' itself is fundamentally composition in-

dependent.
The second, new term of Eq. (3.9} represents correc-

tions to the constant-volume assumption. It vanishes by
Eq. (3.10) [or (3.14)] when the alloy has the same volume
as its constituents, i.e., when d V/dx =0, or, equivalently,
when the alloy is infinitely compressible [B(V) =0]. The
two terms in Eq. (3.9) reflect the dual coordinates used in
phenomenological models of solid solubility, compound
stability, and mixing enthalpies: The second term can be
thought to describe the destabilizing effect of strain in-
duced by the mismatch between the molar volumes of the
constituents, and parallels the classical "size factor" in al-

loy models, ' whereas the first term can be thought to
qualitatively describe the "electronegativity factor" of
Darken and Gurry, Miedema, and Pauling, and reflects
the effect
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volume quoted Table II is uncertain, and even the
enthalpy of formation 50' ' is not known. We
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FIG. 2. dV/dx for the Cu-Au system obtained by taking the
derivative of V(x) (a) when V(x) is a third-order polynomial in-

terpolating [ V„((dots) and (b) when V(x) follows Vegard's rule
(dashed line).

s( '= —5.592 kcal/mol,

s' '= —3.858 kcal/mol,

(4.5)

in excellent agreement with our results of Eq. (4.1) in
which no fit to phase diagrams is involved. Note, howev-
er, that in the model of Kikuchi et al. ' the c.'"' values
take
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so we did not attempt to fit them any better (a fit is clear-
ly easier in the e-G approach
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obtain the AB phase even for p as high as +1.1

kcal/mol, and to obtain the AB3 phase at p lower than
0.8. Thus, to decide
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8. Phase diagram for strain-induced

metastable compounds

To illustrate the metastability of ordered compounds
brought by the elastic term G (x), we calculated the CVM
phase diagram of a model with positiue enthalpies AH'"'
but negative chemical energies E'"' (Fig. 9). The phase di-
agram presents a very broad iniscibility gap (solid line)
starting at T= 1987 K (obtained from the CVM), or 1920
K (obtained in the calculation MC). We have verified the
limits of existence of the ordered phases y and 5 (dotted
lines) inside this miscibility
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and

dhE
x=X

(n) ~(n —1)
=Q(1 —2X„)+ (7.4b)

Thus, Eq. (7.2} implies

2&(n) (n +1) E(n —1) 0 (7.5)

If, in addition, the ordered structures are stable relative
to the constituents (AH' '&0), we have the conditions
for relative stability of an ordered system with pair in-

teractions

c' '&0; hH' '&0 stability . (7.7)

Metastability, in the sense defined above, occurs when

c' '&0; hH' '&0 metastability . (7 8)

Obviously, no ordered compounds exist if both the chemi-
cal and the elastic energies are positive, i.e.,

c,
' '~0; hH' '&0 no ordering . (7.9)

Figure 11(a) shows graphically the stability regimes of
Eqs. (7.7) and (7.8). Since strain energy [G(x) of Eq.
(3.15)] is non-negative, we always have hH'2' & e'z'.

Hence, the half plane below the AH' '= c.' ' line is forbid-
den. Using hH' '= Q/4+ e' ', we also give these regions
in the (Q, e' ') plane [Fig. 11(b)] and the (Q, bH' ') plane
[Fig. I 1(c)].

This analysis suggests that metastable long-range or-
dered compounds can exist within the miscibility gap if
the constituents are sufficiently lattice-mismatched [to
give 6(x) »0], provided the chemical interactions are
suSciently attractive. This is likely to be the case for sys-
tems such as Cu-Ag, for which we have recently predict-
ed metastability at low temperatures. This highlights
the difference between the c-G approach and the s-only
approach of Kikuchi et al. these authors were are

in

existwith

inwerethat
of

Metastability,

(n)(n)pair
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(i) Elastic energies G(x) act to narrow the single-phase
existence regions (Fig. 4}, (hence stabilize ordered com-
pounds) and to broaden the two-phase regions in the
phase diagram.

(ii) Whereas the s-only method leads to substantial
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We found that for high temperatures, and a very broad
range of negative or positive c,'"', P„,and P„' ' could be
related by the following:

(i) At concentration x =0.25,

lnP, n,")
lnP, a ',

"
lnP, lP',R'

lnP, n,("'

177.6
—216.7

82. 1

318.9
745.4

—5.5

40.7
—132.4
230.0
373. 1

—43.4
36.8
53.2

—245. 8
—105.4

(B6)

(B4) L& &0 and L3 &0, so only the phase n =2 has a
maximum in the phase diagram. This maximum at
x =0.5 is predicted by Eq. (BI) to occur at
T2 ———421.11'' '. A direct CVM calculation gives

T2= —378.6e' '. Considering the large range of a and P
involved, the error is reasonably small.

(D) To complete this short description of CVM results
for fcc crystals wc, show how to relate the chemical ener-

gies c.'"' to the tetrahedron probabilities in the disordered
state. In semiconductor alloys, one seldom knows the
transition temperatures, but frequently determines how
much the probabilities diverge from those P„'"'of a com-
pletely random alloy

4
P(R) ( I x)4—nx n (B5)

n

(ii) At concentration x =0.50,

lnP /P"'
lnP, /P', '

lnPz/Pz '

lnP3/P3 '

1P /P'

190.1

—126.4
283.9
94.2

—60.4
0.0

61 ~ 8 —220. 7 61.8
0.0 94.2 —126.4

—60.4 283.9 190.1

(2)

(B7)

(iii) At concentration x =0.75 the result is the same as
x =0.25, if one interchanges subscripts 1 and 3.

Eqs. (B6)—(B7), which resulted from a linearization of
the CVM results for (s"',e' ', e' ')=(+6,+8, +6), are
useful for a qualitative prediction of clustering in semi-
conductor alloys. They also clarify the facts that (i) clus-
tering clus-
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