


ROBERTO OSORIO, SVERRE FROYEN, AND ALEX ZUNGER 43

(aj Diamond symmetry (b) Zinc-blende symmetry

FIG. 1. Representation of structures with (a) the diamond
and (b) the zinc-blende symmetry in ( 2 B )& C2 alloys. A
solid circle indicates an A"' atom, an open circle a B atom,
and a shaded circle a C' atom. For clarity, the structure in (b)
represents the maximum possible zinc-blende ordering, with all3"' atoms on one sublattice and all B atoms on the other.
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models of the ZB~D transition have neglected octed
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hole. Compensation can then occur through charge
transfer from donor to acceptor bonds. This creates a
distribution of positive and negative charges. The energy
associated with this process can be conveniently modeled
by considering ( A "8 )„/(C2 )„superlattices (SL's). In
superlattices, two types of AZ, =+1 bond interfaces
occur: In [110]SL's, both donor and acceptor bonds are
present at the same ("neutral, " or nonpolar) interface,
while in [001] and [111]SL's, only one type of hZ, =+1
bond is present at each (charged, or polar) interface. In
unreconstructed [001] and [111]SL's, only partial com-
pensation may take place if the period is long enough,
since the band gap acts as an upper limit to the potential
drop across charged interfaces. However, reconstruction
can further lower the energy through swapping of atoms
between interfaces, allowing thereby for a more effective
compensation within each interface. Full compensation
is expected in nonpolar [110] SL's and all other struc-
tures, including alloys, where long-range fields are absent.

According to the model of Dandrea, Froyen, and
Zunger, the excess energy of nonisovalent lattice-
matched SL's can be approximated well by a combination
of Ising-like nearest-neighbor interactions between neu-
tral atoms and electrostatic terms due to charge transfer.
Since the energies are measured with respect to the segre-
gated end-point compounds, and since stoichiometry be-
tween the 3 " and 8 elementary constituents is main-
tained, only the difference between the average energy of
the two types of (neutral) b,Z„=+1 bonds and the aver-
age energy of the two types of normal bonds is a relevant
parameter when electrostatic terms are not included.
The total excess energy before charge transfer (q =0) is

E „,(q =0)=(ND+N~)5,

tions between compensating charges [q;] (usually —,
' and

—
—,', in units of the electron charge) placed, in the model,

at the midpoints [R, ] of the b,Z, =+1 bonds. (The small
variations in bond length between donor and acceptor
bonds are ignored and the average bond length of the
nearly lattice-matched 3 8 and C constituents is
used in the model. ) These interactions are assumed to be
screened, independently of distance, by the average static
dielectric constant eo of the two components, so that we
have

e q;q.
M" e~ R —R~~o;&,

(5)

The total excess energy is the sum of Eqs. (1) and (3)—(5):

E~„,(q)=E~„,(q =0)+E„+Ec,„I .

Here, E„+Ec,„& is the total-energy change that can be
assigned to hZ, =+1 bond energies due to charge
transfer, including the (negative) compensation gain and
the (positive) intrabond Coulomb energy. The total pair-
wise energy can also be written as

Ep„,(q) =(ND+N„)J(q),

bH=E „,(0)+E„+Ec,„I+EM,d .

Previous models ' ' ' ' have retained only the
E „,(0) term.

It is convenient for a thermodynamic treatment of the
problem to regroup the contributions of Eqs. (1)—(5) as

bH =Ep„,(q)+EM,d,
where

where ND and Xz are the total number of donor and ac-
ceptor bonds in the structure (ND =Nz for
stoichiometric systems) and the average excess energy 5
of the bZ, =+1 bonds before charge transfer occurs is

expressed in terms of bond energy differences as

where

J(q)=5+bJ(q) .

In this expression, the bond charge-transfer energy is

b J(q)= —
—,'E (0)q+ —,'(UII+ U„)q

(10)

2~ ( siii-IV+ eiv-V eiii-V eiv-Iv )

After charge transfer, three additional terms appear.
(i) Transfer of a charge q from a donor to an acceptor

state initially separated by a gap of Eg(q =0) produces an
energy gain (to first order in q) of qE (q =0). A compen-
sation gain,

In Sec. III we show how the energy parameters 5 and
(UD+ U„) [and, therefore, J(q =

—,')] are obtained from
this model through first-principles superlattice pseudopo-
tential total-energy calculations for the lattice-matched
systems (GaP)„/(Si2)„and (GaAs)„/(Gez)„. The accura-
cy of this model in predicting calculated SL energies is
then demonstrated.

E„p= ,' (ND +N„)E (—0)—q, (3)

Eco I '(ND +Nz )( UD + U—z )q (4)

where UD and U~ are intrabond Coulomb repulsions in
the donor and acceptor bonds.

(iii) Finally, an excess Madelung energy EM,d results
from the sum of screened long-range electrostatic interac-

therefore arises.
(ii) The excess or deficit of compensated charges on the

AZ, =+1 bonds now produces an excess intrabond
Coulomb energy, due to both electrostatic and exchange-
correlation terms, given by

III. CALCULATION OF ENERGY PARAMETERS
AND TESTS OF THE MODEL

The excess energy and charge-transfer values were cal-
culated for 13 (GaP)„/(Siz)„SL's by the semirelativistic
self-consistent pseudopotential method using a plane-
wave basis with cutoff energy of 15 Ry. These were used
to obtain a fit of the energy model of the previous section.
The Madelung energy was calculated by the Ewald
method, with a dielectric constant taken to be the aver-
age (co=10.4) of GaP and Si. The parameters 5 and
( Uz, + U„) were extracted from a least-squares fit to the
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FIG. 2. Formation enthalpy (with respect to the separated
constituents) of some (Gap)„/(Si2)„superlattices, according to
the charge-transfer model (M) and to pseudopotential calcula-
tions (P) [Ref. 29]. The sublattices are classified in (a) and (b)
according to their number of AZ, =+1 bonds, AD+X&, and
are denoted by their orientation and repeat period n. The bars
for "n =2 rec" indicate the average energies of reconstructed
structures obtained by swapping cation and anion atoms on
different (001) planes, as described in Ref. 29.

pseudopotential total energies for fixed values of Eg(0).
The degree of arbitrariness in the choice of E (0) was of
little consequence to the fit: Changes in Eg(0) are offset
by changes in ( UD + U„) so that both b J (q) and 6 are
relatively insensitive to E (0) over a reasonable range of
values.
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0.

0fit:for

cntial

AZ,AZ,0.The

of

themodel

in

0.are

energy

valuesforsome

by

the

pseudopotential

(withsd
(the)Tj
ET
BT
/Xi5 9.39  Tf
9582f
205.67 Td
(obtained)Tj
ET
BT
/Xi5 8.674Tf
1658122 94.56 energythemodel"M"Eg(0).Theq=0

values the

cation

of

themodel

for

theigstructed0.areand

that

lcula-cation

enenergies

AZ,0.n.

are

cTd
(cROYEN,)Tj
ET
BT
/Xi 10.49 Tf
165344 679.89duonable

to

the

of

a

cntial

numberof

AZ,=+1

([Ref.)Tj
ET
BT
/Xi1 7.94 Tff
9529f 658.11FiguTd
(are)Tj
ET
BT
/X03 9.44189f
55291 114.33 Td
(a)Tj
ET
BT
/Xi5 9.062055291 114.33 llusargstvalues

the

that

cntial

AZ,

'

U„)the[Ref.

in

0.
(b)

the

some

number

of

for

and

for

bonds,

the

model

indrinessthat

the

someenergy

of

cntialthat0).

The

model

tions the

andin

the

tions

the

q=0forinatoms

of the

charge-transfer

energyiseluaccordingigs
(cation)Tj
ET
BT
/X69 9.266Xi 204578 669.11ga Td
(in)Tj
ET
BT
8ii5 9.828122 945Tf
205.67 Td
(and)Tj
ET
BT
/Xi5 1.14 T 2044 Tf
76.22 Targ Td
cula-b
((b))Tj
ET
BT
/X8i5 8.f
22 2944369.11 Td
(and)Tj
ET
BT
/Xi13.23922 1444369.11 Td
(the)Tj
ET
BT
/X15 8.95
75 2044369.11 Taer Td
cula-ucordingcvalues.was

forthe

energy

values

of

=+1GapGe/(SSL'valueswithcmodelThe

resulting

energy

parameters

are

0.0=2fit:

and

AZ,0.0.are

43

thecd
(was)Tj
ET
BT
/Xi5 10.31 Tff
93.44 124.89 Td
(of)Tj
ET
BT
/X1 8.12 7Tf
537Tf 124.89 Td
(the)Tj
ET
BT
/Xi5 9.98734 6737Tf 124.89 Td
(model)Tj
ET
BT
/X7315.8702T 1737Tf 124.89w
((with)Tj
ET
BT
/Xi810.42193 1237Tf 124.89 Td
(the)Tj
ET
BT
9X15 8.95.89 2437Tf
140.89pTd
(pseudolcula-)Tj
ET
BT
9Xi8 1.14 Tf
53622 177.44potentialcad
(cdROYEN,)Tj
ET
BT
/Xi 10.49 Tf
143.56 605.67showesultinginperioddmentTd
(0.)Tj
ET
BT
8Xi5 9.86 T 2035.11 86.67Analysihangesof

thecadtructed

pseudopotentialtotalenergies

in

atoms

of

for

=+1 of

0.

q=0

~

0.

—
0.

—

I

(b)

~

0.

—

N'q=0q=001-I

0.

d
(0.)Tj
ET
BT
/Xi5 8.643Tf
289.56 669.11„pGe/(
(q=0)Tj
ET
BT
/6X65 4.446Tf
226958 636„
(are)Tj
ET
BT
/X75 14.40Tf
156 200.44 Td
'([111])Tj
ET
BT
/Xi5 14.40Tf
262.78 701.78lTd
(fl=2)Tj
ET
BT
8Xi 8.945Tf
231656 690.89 Td
(NpTd
(—)Tj
ET
BT
/X65 14.403f
2062.11 86.67 Td
(M)Tj
ET
BT
/Xi5 8.641 T 1062.11 86.67d
(M+p)Tj
ET
BT
7X 12.4448Tf
89122 262.22 Td
(Np+NA)Tj
ET
BT
/X5 8.641Tf
1661448 64.67 Td
(—)Tj
ET
BT
78i5 9.048 Tf
961 Tf
76.22p+NA-N/2)Tj
ET
BT
/Xi5 9.640Tf
265933 669.11 Td
([001])Tj
ET
BT
/Xi5 9.7431059769.11 Td
([001])Tj
ET
BT
/X8i5 8.46Tf
2659369.11 Td
([110])Tj
ET
BT
/Xii5 9.241 Tf
95911 176.78 Td
([111])Tj
ET
BT
/X45 14.40Tf 6559082 74.67nTd
(0=2)Tj
ET
BT
/Xi5 8.4434559082 74.67nTd
(0=2)Tj
ET
BT
/Xi5 9.3465ff
95956 200.44nTd
(0=2)Tj
ET
BT
7Xi1 8.449Tff
75978 104.22 Td
(n=1)Tj
ET
BT
/X45 8.7434Tf
55878 223.89 Td
(rec.)Tj
ET
BT
/Xi5 10.132Tf
105356 669.11 Td
(FIG.)Tj
ET
BT
/Xi5 9.23 Tf
145.78 6363Td
(0.)Tj
ET
BT
8X59 9.035 Tf
7535f 124.89Sad
(some)Tj
ET
BT
/Xi5 8.13 Tf 655300 725.78a(tions)Tj
ET
BT
/Xi510.13978 675300 636.33FigTd
(0.)Tj
ET
BT
8X5 9.6406753002 74.67d
(0=2)Tj
ET
BT
/Xi5 9.64 Tff
753002 74.67fTdnergyd
(0.)Tj
ET
BT
/Xi5 8.64i5 9.45.11 134.78GapGe/(tions0.the

of

cvalues. tothethe[Ref.

the

ucordingenergyinforforrelbonds,the

charge-transfer

energy

b

(q)relbonds,tothe

of the

Ed
((0))Tj
ET
BT
/Xi7 9.25 Tf 214388 668.11 T omlcula-0= 669.11casd
(in)Tj
ET
BT
15 8.94 4549.4 Tf
205.678J Td
((q))Tj
ET
BT
/4i5 8.443449.4 Tf6.33tygerelcula-~the q=00.Echarge-transferand(b)Tj
ET
BT
/1X99.4Tff
50 204638.91220457values(0)0=2

[111]

describedvalues4 Td
(of)Tj
ET
BT
/X89i315.8
549.6 656 669.110.33 Td(charge-transfer)T
/X53 f1.6 656 669.14.67 Td
(energy)Tj
ET
B712.44572 8f
205582f
205 669111casd
(in)Tj
ET
BT
20448T1.14.6205502.11 Td
(fixed)Tj
ET
BT
/Xi5 8. 8.3496988 63305582f
2054667 679.thethecation(with0.andresultingAZ,bysd
(the)Tj
ET
BT

ET
BT
/4580 T
33 Td
(—)Tjthwas(with
n=1q=0 d
(7 Td
(and)Tj
ET
BT
9
Xi5 9.f5.91226101544 636.3is
(atoms)Tj
ET
BT
/X8Xi1 8.480 T
3101.78 Td
2)Tj
ET
BT
/Xi5 9.68/Xi519679.86101
205.67dsnsequenceChangesafTd
tructedfor

pseudopotent9.042538i59.829184.33a Tdsnsequence by [Ref.sd
(the)Tj
ET
BT

E7
BT
/42 1.33 Td
(alues)Tj
ET
BT
/Xi5 8.63 49.45.128wayrinesspar
(to44 Td
(pseudopotent19.8513T
189 i5 9.44Td
(alde(sd
(the)Tj
ET
BT

BT
/Xi5511 268.56 Td
(a11oyddegree)Tj
ET
BT
/Xi.14.547111128wayrinessIg Td
cula-)Tj
ET
BT8.957634.5 927
54356 65princip1
cula-)Tj
ET
BT
9X23 9.6459allc2718f
205.67a
(of)Tj
ET
BT
/Xi5 9.21 374.5 927
 Td
(5Tf
205.67 om 
(igs
(j
ET
BT
4
85.22 2f 145170 200.335= Td
(0.)Tj
ET
BT
i58 1.1404
5535f27
54356 65d
(E)Tj
ET
BT
/Xi5 10.51T69allc27184 636.22ihanges)Tj
ET
BT
/Xi5 8.9445.67 280.56 9moT 
escribed)Tj
ET
BT
54.24 6562 269.22 Td
7 Td
ia11
(the)Tj
ET
BT
/Xi5T4
9.53
452Tf
143.56 
(offset)Tj
ET
BT
/Xi5 678i5 83X9 281.Td
(+)Tj
Eas)seudopotential)Tj9
BT
/6252Tf
143.56 6escribed)Tj
ET
BT
/Xi5 37 allc2669.22 Td
ma05.67 om 
(igs
(cat9.24 3 00889.13 Tf
3 Td
epd
(the)Tj
ET
BT
8ii7545 14.309.13 33 Td
(ader
cula-)Tj
ET
/X6 14.448 Tf
76 Tf
53622 177.44potential)Tj
8.349689 281.T69.22 Td
06
20.56dd
me)Tj
ET
BT
/Xi5 8.13 Tf52658.1.T69.22 Td
Td
(that)Tj
ET
BTues0).



43 STRUCTURAL PHASE TRANSITION IN (GaAs)& „Ge,~ AND. . . 14 061

havior, depending
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TABLE II. Contributions to the formation enthalpies of unrelaxed GaP/Si superlattices and alloys. All energies are in

meV/atom. (ND+N~ )/N gives the relative number of AZ„=+1 bonds. The formation enthalpy in the model without charge
transfer is AHM(0) =E~„,(q =0) [Eq. (1)] and the pairwise energy with charge transfer is E~„,(q) [Eqs. (9)—(11)]. The first few terms
in the excess Madelung energy are shown next: Contributions E„ form nth neighbor bond pairs [Eqs. (13) and (14) and Fig. 4]. The
remaining terms in the Madelung energy are denoted by E„, while the total excess Madelung energy is

EM,d
=E, +E2 +E3, +E» +E„. The next two columns represent the total formation enthalpy from the model,

EHM =E~„„(q)+EM,~, compared to that from the pseudopotential calculation, AHP [Ref. 29]. This comparison shows the model
captures the important physical ingredients of the excess energy of nonisovalent systems. Superlattices of (GaP)„/(Si, )„are denoted
by the repeat period n and orientation G. The line for "2 (rec)" displays average energies of reconstructed structures obtained by
swapping cation and anion atoms on different (001) planes, as described in Ref. 29. The maximum entropy (Max-S) zinc-blende (ZB)
and diamond (D) structures are described in Sec. V.

Structure
ND+N~

N
b H~(0) Ep„r(q)

Superlattices

E Erem EMad AHM AHp

[001]

[110]

Max-S
Max-S

n

1

2

2(rec)

ZB
D

1

2
1

4
1

6

1.097
1.172

210
105
105

210
105

70
52

105
52

35

230
246

126
63
63

126
63
42

32

63
32
21

138
148

45
22

11

45
0
0
0

0
0
0
Alloys

56
46

—52
0

—52
—26
—17
—13

—14
—22

—23
12

0

—23
12

8

6

—34
0
0

—6
—10

—23
12

0

—23
12

8

6

34
17
12

47
—24

12

—12
—3

—6
22

—6
—10

38
18

120
85

60

120
53

36
27

56
37
30

176
166

125
90
62

125
48
38
25

42
30
25

'Estimated to be small in alloys.

III that our model captures the variations in the directly
calculated pseudopotential values and that neglect of
electrostatic effects [compare bH~(0) with bH~] overes-
timates instability and reverses the order of the ZB and D
alloy phases.

The truncated model can be used to predict the heats

of solution of some simple substitutional nonisovalent de-
fects in the 3"'B and C constituents. Such results
can be compared to those obtained from Harrison's
universal-parameter tight-binding (UPTB) method for
isolated defects. Consider (GaP)i „Si2 as an example.
We define the "sublattice heat of solution" Ho, p(Si, Si) as

TABLE III. Same as Table II for GaAs/Ge.

Structure
ND+N~

N
EHM(0) pair ( q) E

Superlattices

Erem EMad AHM AHp

[001]

[110]

Max-S
Max-S

n

1

2

2(rec)

ZB
D

1.097
1.172

162
81
81

162
81
54
40

81

178
189

109
54
54

109
54
36
27

54

120
128

35
18

9

35
0
0
0

0
Alloys

44
36

—40
0

—20

—40
—20
—13
—10

—11
—17

—17
8

0

—17
8

6
4

—26

—17
8

0

—17
8

6
4

35
—18

9

35
—5

—4
16

31
15

105
70
52

105
45
31
23

49

151
143

112
68
50

112
38
35
22

35

'Estimated to be small in alloys.
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the energy required to transfer a pair of unbound Si
atoms from the bulk of a Si crystal replacing a pair of Ga
and P atoms in CraP, so that the two Si atoms remain
separated in two different sublattices. This creates four
Si—Ga and four compensating Si—P bonds in
tetrahedral geometries. Each defect, therefore,
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fcc sublattices of the diamond lattice by a and P, we call
y;. the pair probability for finding an atom i on sublattice
a and a neighboring atom j on sublattice P. The corre-
sponding site probabilities will be denoted by x; and xJ~.
The total configurational entropy of the lattice per site in
units of kz is then
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Cumulative sums of terms
in (GaP)„(Si2)n Madelung energies

VI. EQUILIBRIUM PHASE DIAGRAMS

A. Hamiltonian and its solution
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E
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+ 002
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-0.02
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We discuss next the equilibrium finite-temperature
thermodynamics resulting from our truncated charge-
transfer model using the pair approximation of the
cluster-variation method (CVM). We will comment on
both equilibrium results and on possible metastable
states.

The bulk equilibrium thermodynamics of homogeneous
(A"'B ), „C2 solid alloys will be described through
the excess free energy

I I I

1 2 3z 3h
Order of bond pairs

I

Tata)

FIG. 7. Convergence of the excess Madelung energies of
maximum-entropy (Max-S) x =0.5 (GaP)& „Si2„alloys in the
zinc-blende (ZB) and diamond (D) phases and of two n =2
(GaP)„/(Si2)„superlattices. The order of bond pairs correspond
to the electrostatic interactions of Fig. 4.

AF=bH —TS, (22)

where the excess enthalpy AH includes the pairwise and
interbond electrostatic

of
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g, =&s, &, g, =&s, &,

g, =(S,'&, g, =(S,'&,

g, =&S,S, ), g, =(S,'S,'&,

g, =&S,'S, &, g, =&S,S,') .

(26)

Here, E and j represent nearest-neighbor sites on sublat-
tices a and P, respectively; the spin variable S; can as-
sume the values —1, 0, or 1, according to which atomic
species ( 2'", C', or
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mates for order of magnitudes of solubilities.
A C impurity atom in solid A B has an excess en-

ergy h6', /2, where b, 8, is given by Eq. (16) if no charge-
transfer effects are included or Eq. (15) with charge-
transfer effects. In the very dilute limit no correlation
occurs between different impurities, and a mean-field ex-
pression for the entropy is appropriate. The free energy
in the x —+0 limit is then given by

Fo(x) =Nx
2 (Nx)![N (1—x) ]!

2k~ T
x + [x lnx + ( 1 —x )ln( 1 —x ) ]2 b, C,

(31)

1 —x
2

2k~ T 1 —x+ x lnx +(1—x)ln
1 2

(32)

The

the
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FIG. 10. Representative free energy vs composition curve of
(GaAs)& Ge2 for a temperature below the tricritical point.
The dashed and solid lines indicate the zinc-blende and dia-
mond phases, respectively. Points A and B are the limits of
phase separation (represented by the dotted line), S is the zinc-
blende phase spinodal, and P is the unstable second-order tran-
sition.

order transition line terminating at x =0 at a finite criti-
cal temperature T„so that only the D phase is stable for
T) T, . This feature enabled a low (x, =0.3 or 0.4)
order-disorder concentration to be Ptted in previous ap-
proaches by adjusting ratios of temperature to interaction
energies. While we have excluded AZ, =+2 bonds, we
note that if their energy were three to four times 6 (as
suggested in Refs. 27, 58, and 59), their inclusion in our
model would lead to significant deviations in the phase
diagrams only for T «2000 K.

(ii) As the temperature is lowered, x, increases gradual-
ly, until a tri critical point is reached, at
T = T„=1.826/kz, x =x„=0.727, below which the
transition becomes first order. The presence of a tricriti-
cal point is a well-known characteristic of the Blume-
Emery-Griffiths model.

(iii) Below the tricritical point, the first-order transition
is refiected in an (x, T)
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for the uncompensated case, we find that in the CVM
pair approximation single phases are unstable in most of
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tion is antiferromagnetic (J &0). The condition



14 072 ROBERTO OSORIO, SVERRE FROYEN, AND ALEX ZUNGER 43

Zunger, Phys. Rev. Lett. 66, 2132 (1991), demonstrated by
total-energy calculations that the energy-minimizing surface
geometry of Ga0 5In0 &P is identical to the one observed after
growth but differs from the bulk-stable geometry. See also a
preliminary report in J. E. Bernard, R. G. Dandrea, L. G.
Ferreira, S. Froyen, S.-H. Wei, and A. Zunger, Appl. Phys.
Lett. 56, 731 (1990).
M. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev. A 4,
1071(1971).

53K. C. Hass and R. J. Baird, Phys. Rev. B 38, 3591 (1988).
~4Y. Bar-Yam, D. Kandel, and E. Domany, Phys. Rev. B 41,

12 869 (1990).
S. Wolfram, Rev. Mod. Phys. 55, 601 (1983).
I. G. Enting, J. Phys. C 10, 1379 (1977).
E. Domany and W. Kinzel, Phys. Rev. Lett. 53, 311 (1984).

58M. A. Davidovich, B. Koiller, R. Osorio, and M. O. Robbins,
Phys. Rev. B 38, 10524 (1988).

59T. Ito, Jpn. J. Appl. Phys. 26, L1177 (1987);27, 1916 (1988).
W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409
(1979).
G. A. Baraff and M. Schluter, Phys. Rev. B 33, 7346 (1986).
M. Kurata, R. Kikuchi, and T. Watari, J. Chem. Phys. 21, 434
(1953).
J. W. Essam and M. F. Sykes, Physica (Utrecht) 29, 378
(1963).
See, for instance, L. E. Reichl, 3 Modern Course in Statistical
Physics (University of Texas, Austin, 1980), Chap. 2.
For a review, see M. Tosi, in Solid State Physics, edited by

geometry


