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Here,s denotes the type of ordered structure, andaA

andaB are the equilibrium lattice constants of the bulk
elementsA and B
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Fig. 3. Equilibrium configurations of an Al0.966Zn0.034 alloy from Monte-Carlo simulations above and below
TC, only Zn atoms are shown. Starting from a random configuration the Zn precipitate (NZn = 918) is formed

during careful annealing below the critical temperatureTC(x) given by the coherent fcc miscibility gap.

ordered AlpZnq compounds whose layers are oriented
along the [111] direction. Consequently, we find [41]
that such [111] superlattices show unusually stable
formation enthalpies. For example, the Al3Zn3 super-
lattice along [111] has a formation enthalpy of only
DHf = + 2.8 meV/atom [41], while [001]-oriented
structures are much higher in energy. The conse-
quence for the formation of precipitates is now obvi-
ous: in no direction other than [111] are deformations
so low in energy. Therefore, the “flattening” of pre-
cipitates in the [111] direction evident in Fig. 4 is
caused by the extremely small [111] strain in Al–Zn
in combination with a strong anisotropy of the chemi-
cal energy.

It is noteworthy that thec/a ratio (with respect to
ideal close packing) at which the fcc Zn total energy
has a minimum is practically identical to thec/a ratio
in hexagonal close-packed (hcp) Zn (shown in Fig. 6
as a hexagon). Experimentally, hcp Zn has an anom-
alously largec/a ratio of 1.15 (with respect to ideal
close packing). This anomaly of hcp Zn has been the
subject of a number of earlier investigations (e.g.,
Refs. [59, 60]). The observation of the largec/a value
in fcc Zn (Fig. 6) suggests that the physical mech-
anism that is responsible for the anomalousc/a ratio
of hcp Zn could be the same as that causing the insta-
bility of fcc Zn. A detailed discussion about the insta-
bility of fcc Zn can be found in Ref. [41].
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Fig. 4. Dependence of calculated coherent fcc Zn precipitate shape on the number of Zn atoms and temperature
in Al–Zn alloys. The bottom right marks thec- anda-axes of the precipitate, which can be used for a quantitat-

ive comparison to experimental data (only Zn atoms are shown).

Fig. 5. Comparison of size versus shape relation of precipitates in Al–Zn between our calculations and experi-
mental results for two different temperatures.rm = (ca2)1/3 is the radius of the associated sphere having the

same volume.
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Fig. 6. Volume-conserving first-principles total energy calculations of fcc Zn deformed along the (100) and
(111) directions. The energy differences caused by distortions along (100) and (111), as well as for hcp Zn,
are always given with respect to the undistorted fcc lattice. The energy of hcp Zn is denoted as an open

hexagon.

5. PHYSICAL ANALYSIS OF THE
COMPUTATIONAL RESULTS

In order to shed light on the predicted size-depen-
dent precipitate shape, we construct model precipi-
tates with agivenshape,c/a, and then evaluate their
energy as function of size. Naturally, our cluster
expansion HamiltonianHCE of equation (3) allows the
calculation of any arbitrary given configuration at
T = 0 K, i.e., without any Monte-Carlo simulations.
The advantage of such an inverse approach is that the
calculated energies of given shapes isolate the influ-
ence of the shape change on the energy, while the
MC simulation changes the shape and the degree of
order (i.e., disorder caused by finite temperature)at
the same time, thus not allowing the effects to be sep-
arated. We chose the ideal sphere (c/a = 1), as well
as hexagons with varyingc/a ratios of 0.85, 0.50 and
0.35, as model precipitates for our calculations and
determined theirT = 0 energies for different numbers
NZn of Zn atoms. The model precipitates are embed-
ded in a 40× 40 × 40 fcc lattice cell. All sites that
are not occupied by the Zn atoms, are occupied by
Al atoms. So, the total number of atoms of any con-
figuration is always 64,000. It should be mentioned
that such a calculation of a formation enthalpy for a
configuration consisting of 64,000 atoms does not
take longer than a few seconds on a workstation or
a modern PC. This short computer time for—in an
atomistic sense—huge systems makes our cluster
expansion a powerful tool.

Fig. 7 shows the dependence of theT = 0 energy
of the four chosen model precipitates on their size.
Only for extremely small precipitates (less than about
90 Zn atoms) does the ideal sphere (c/a = 1.0) rep-
resent the lowest energy atT = 0. With increasing
size, the lowest-energyc/a ratio decreases, until at
about 1600 Zn atoms the model withc/a = 0.35
becomes the energetically favorable shape. The tran-
sition points of the energy curves belonging to differ-
ent c/a ratios are denoted in Fig. 7 by arrows. This
calculation can be used to construct a step function
in the size versus shape diagram, which we show in
Fig. 8. For comparison, the size versus shape curve
obtained via MC annealing forT→0 is also shown.
It can be seen that the



4015MÜLLER et al.: PREDICTING PRECIPITATE SHAPES
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ECS(s) =
1

4x 2 1O
k

DEeq
CS(k̂, x)uS(k, s)u2. (5)

As described in Section 2,DEeq
CS can be calculated by

the energy change caused by deformation of thepure
bulk elements Al and fcc Zn in well-defined direc-
tions for a common lattice constanta. Consequently
DEeq

CS, and thereforeECS(s), does not include infor-
mation about the strength of chemical interactions
between Al and Zn atoms, but is a function of compo-
sition x and directionk̂ only. Precipitate shapes calcu-
lated by considering onlyECS(s) will therefore reflect
the elastic properties of the alloy system. Second, we
present the case where non-strain (pair and
multibody) interactions to come into play:

Echem(s) = O
k

Jpair(k)uS(k, s)u2 + OMB

f

DfJfP̄f(s). (6)

This part includes all of the information about
strength and importance of different chemical interac-
tions characterized by effective cluster interactions
Jpair andJf. It does not consider the energy necessary
to maintain coherency between the Al and fcc Zn
matrix caused by the lattice misfit; i.e., the precipitate
is able to maintain coherency with the Al matrix for
any arbitrary precipitate size. Precipitate shapes cal-
culated by considering onlyEchem(s) will therefore
reflect the properties of the chemical interactions in
Al–Zn. Naturally, this separation is not unique, but,
as we shall see, it allows us to discuss and understand
by which energetical factors the precipitate shape is
controlled. It should be emphasized that an analogous
decomposition of precipitateshapescorresponding to
the two defined energy parts of the Hamiltonian is
not possible because, unlike the energies, geometrical
shapes arenot additive.

For the following, a fixed precipitate size
(NZn = 11,656) was chosen. The Monte-Carlo cell
consisted of 60× 60 × 60
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cess. Unlike the simulations leading to Fig. 9, the
decomposition of the energy was always madeafter
the MC simulation. The resulting energy curves for
the total HamiltonianDH, the chemical energyEchem

and the strain energyECS as function of temperature
are shown in Fig. 10. Since the energy was separated
after the simulation, for each temperature, the sum of
chemical and strain energy must be equal to the total
energyDH per Zn atom. We observe the following:

1. at high temperatures ( > 150 K) the contribution
of the chemical energy to the total energy is larger
than the contribution of the strain energy, while
the opposite is true for lower temperatures (,
150 K); and

Fig. 10. Dependence of energyDH on temperature for a given precipitate size (NZn = 11,656). After annealing,
the energy was decomposed into strainECS and chemicalEchem parts. While for temperatures higher than
| 150 K the contribution of the chemical part to the total energy is larger than that of the strain part, the

opposite is true for lower temperatures. ForT→TC andT→0 K the resulting precipitate shapes are shown (only
Zn atoms are shown).

2. while the chemical energy decreases strongly with
decreasing temperature, the strain energy is nearly
temperature-independent.

The temperature dependence of the two energy
components becomes more obvious if we separate
them into temperature-dependentand temperature-
independentparts. For this, the CE Hamiltonian is
written as

DH = Echem(N, TC) + [Echem(N, T)
2 Echem(N, TC)] + ECS(N, 0) + [ECS(N, T) (7)

2 ECS(N, 0)].
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Here, Echem(N, T
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The dependence of the shape on the size at
T = 0 K can already be found by calculating energies
for perfectly ordered model precipitates. We used an
ideal spherical precipitate and hexagons withc/a
ratios of 0.8, 0.5 and 0.35 for our calculations. These
four model precipitates already give qualitatively, via
Monte-Carlo simulations, the observed size versus
shape relation: namely, a decreasingc/a ratio with
increasing precipitate size.

The separation of the cluster expansion Hamilton-
ian into chemical and strain energy allows a deeper
view inside the energetically controlled size versus
shape relation. Monte-Carlo simulations only taking
the chemical and strain energy into account lead, for
T = 0 K, to different characteristic shapes for both
energy parts: while the strain energy is platelet-stabil-
izing, the chemical part leads to a more spherical
shape. Using this separation also for finite tempera-
tures, it turns out that the shape versus size versus
temperature relation for a given precipitate size is
controlled by two different factors:

1. competition between strain and chemical energy—
the chemical energy dominates over the strain part
for higher temperatures, and the opposite is true
for lower temperatures; and

2. temperature dependence of chemical energy—
while the strain energy is nearly constant as a
function of temperature, the chemical energy
decreases strongly with decreasing temperature.

Since our model is parameter-free, the excellent
agreement demonstrates the ability to predict precipi-
tate shapes and sizes even without carrying out
experiments.
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