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Abstract

Many measurable properties of crystalline binary A;_xBy alloys, such as
phase diagrams and excess thermodynamic functions, could be predicted via
lattice statistical mechanics methods if one knew the ‘configurational energy’.
The latter describes the energy at T = 0 for each of the 2N possible occupation
patterns of the N lattice sites by an A or a B atom. Traditional approaches
described the configurational energy either via empirically fitted, truncated Ising
Hamiltonians, or through highly approximated coherent-potential constructs.
We illustrate here the alternative approach of ‘mixed-basis cluster expansion’
which extracts from a set of ab initio local density approximation calculations of
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of the system. Finally, such simulations give directly the short-range-order parameters [8, 9]
a(x, T) and mixing enthalpies [10, 11].

The configurational energy Econig[{Si}, {Ri}] can be modelled at different levels of
approximation. gqne distinguishes between ‘direct approaches’ and “cluster expansions’ (CE).
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and the ‘concentration wave method’ [22], which involve various approximations beyond the
first-principles local density approximation (LDA) that underlies these approaches. In their
various forms, these methods ignored atomic relaxation of even size-mismatched systems,
approximated the total energy just by the sum of energy eigenvalues, and until recently [23],
overlooked the Madelung contribution to the energy of ionic alloys. Here we will discuss
how a robust CE can be obtained directly from LDA calculations on a few ordered ApBy
structures. This ‘mixed-basis cluster-expansion’ (MBCE) approach [1, 24] builds on and
extends the Connolly—Williams [25] approach. We have recently applied this method to predict
thermodynamic behaviour of numerous binary alloys, including Cu—Au [26-28], Cu—Ag [26],
Cu-Pt [29,30], Ni-Au [26,28,31], Ag—Au [32,33], Cu-Pd [33], Ni-V [34, 35], Ni-Pt [36],
Ag—Pd [37,38], Al-Zn [10,39], Pd-V [34,35], Pd-Pt [32], Cu—-Al [10] and Cu—Zn [40] and
some semiconductor alloys [20,41,42]. Such CEs are then used in Monte-Carlo simulations
of the Hamiltonian. This yields phase diagrams, ground state structures, thermodynamic
functions, short-range-order profiles and precipitate shapes.

In this paper, we illustrate in detail how such an expansion is constructed from LDA total
energies. We focus on the technical issues of how a robust fit is achieved, how structures
are chosen and how a stable expansion is obtained. We illustrate this using three systems:
Ni-Pt, Cu—Au and Sc;—x x S (where denotes a vacancy on the Sc site)
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pure A and B cannot be expressed by these finite-ranged Js. Consequently, this contribution,
Ecs(0), to the formation enthalpy is expressed by the last term in equation (2):

eq |’(‘
Es0) =2 iy Sk OFF () ©

where Egi(X, k) is the constituent strain energy [8,24], which is defined as the strain energy
required to maintain coherency along an interface (with orientation k) of bulk A and B.

To understand the necessity for this term in the CE, consider coherent phase separation,
i.e. solid A and B coherently match along the crystallographic direction k (formally, this is a
long-period superlattice A,/B,, with n — oo oriented along k
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3. Determination of the expansion coefficients in the MBCE

3.1. The constituent strain

Determining E(e:% (x, |2) requires three steps: (i) calculating the epitaxial energies of each
end point, A and B for several directions k and in-plane lattice constant a , (ii) finding
the a that minimizes the total A + B epitaxial energies for intermediate concentrations and
(iii) interpolating the results of (ii) to arbitrary directions of k.

For the first step, one calculates via LDA for pure A and pure B the total energy of several
different in-plane lattice constants, @ (perpendicular to k), and in each case, the unit cell is
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five principal directions. Naturally, each of the energies E." and Eg" is positive definite
and, hence, the coherency strain of equation (7) must be positive definite.

Finally, in the third step, the constituent strain energy is interpolated to arbitrary directions
of k by fitting the results to an expansion of Kubic harmonics. That is, after E_(X, k) has been
directly calculated for a set of directions using total energy methods, it is then interpolated to
all directions by fitting the directly calculated results the following expression:

Imax

Ecs( k) =) bi(a )Ki(k). ®)
1=0

In cubic alloys, only terms with | = 0, 4, 6, 8, 10, 12, ... are non-zero and only these enter
into the expansion. If only the first two terms are retained, then (8) reduces to well-known
expression from harmonic elasticity theory (see discussion in [44]). However, our experience
shows that anharmonic effects are usually significant, and so, in practice, we normally fit the
data using at least four terms in equation (8), i.e. Inx = 8. Figure 4 depicts EZ&(X, k) for
Ni—Pt and Cu—Au as a parametric plot in all directions.

In summary, EZ&(X, k) is determined as follows:

(a) Epitaxial calculations are performed for each constituent of the alloy, A and B. For a series
of different in-plane lattice constantsa (aa a ap), the total energy is minimized by
varying the out-of-plane lattice constant (parallel to k) while the in-plane lattice constant
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is held fixed. These values, E¢yi(a ), are interpolated to all values between aa and ag by
a polynomial fit.

(b) The strain energy for any composition X is taken to be the weighted average of the epitaxial
energies calculated in (a) but we choose the in-plane lattice constant & to minimize the
strain energy as shown in equation (7).

(¢) The strain energy for several directions k is determined by repeating (a) and (b) for each
direction K. In practice, we use 5-7 different k-directions. These directly calculated
k- -dependent values for the strain energy are then interpolated to arbitrary values of k
by fitting to an expansion in Kubic harmonics, as shown in equation (8). Because
of anharmonic effects, we typically find it necessary to use at least four terms in
equation (8).

3.2. The constrained CE fit

In constructing the fitof Hcg(0)to Hypa(0), it is advantageous to use a different number
interaction energies J than the number of LDA-calculated input formation enthalpies. This
is unlike the Connolly—Williams approach [25] where the number of input structures and
interaction energies must be the same, so a large number of LDA calculations might be needed
to obtain a converged expression. However, at the same time, we must avoid ‘over-fitting’
by using too many interaction energies which results in a very accurate fit but a very poor
prediction for structures not included in the fit. To achieve these objectives, we can require
that J,,ir(K) be a smooth function of k. We define [24] a ‘smoothness value’ M as

M= - ZJ(k) 2300, )

where the exponent A
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[40] and table III in [28] give a typical list of input structures. These structures need not be
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4.2. Selection of the type of cluster interactions

The interaction energies J are determined by minimizing equation (10). gf course an excellent
fit can be obtained by using a large number of fitting parameters but such ‘over-fitting” destroys
the predictive accuracy of the CE. We desire a CE which accurately fits the input structures and
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Figure 11. Ground state search for Cu—Au (see caption of figure 10).
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Figure 12. Ground state search for Scj—x [y S (see caption of figure 10).
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Table 2.
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