n-type doping and passivation of CuInSe₂ and CuGaSe₂ by hydrogen

Çetin Kılıç and Alex Zunger
National Renewable Energy Laboratory, Golden, Colorado 80401, USA
-Received 28 March 2003; revised manuscript received 8 April 2003; published 7 August 2003!

An impurity in a semiconductor can have either amphoteric behavior -no net production of electron or holes!, or be an energetically deep center -carriers produced only at high temperature!, or a shallow center -carriers produced even at low temperature!. In most semiconductors -e.g., Si, GaAs, GaP, InP, and ZnSe! hydrogen impurities do not produce free carriers, being instead an amphoretic center; yet hydrogen does dope *n*-type some oxides such as SnO₂ and ZnO. We studied theoretically whether or not H could dope chalcopyrite I-III-VI₂

$$\begin{split} E_{\text{H}^{\sim}} - / 0 ! = & E_{\text{H}}^{lda} - / 0 ! + @1 - C_{\text{`}} - / 0 ! \# @E_{g}^{exp} - E_{g}^{lda} \#, \quad \text{``} 5 ! \\ E_{\text{H}^{\sim}} + / - ! = & E_{\text{H}}^{lda} - + / - ! \\ & \quad + \frac{1}{2} @1 - C_{\text{`}} - / 0 ! + C_{\text{`}} + / - ! \# @E_{g}^{exp} - E_{g}^{lda} \#, \end{split}$$

$$E_{\rm H^{\sim}} + /0! = E_{\rm H}^{lda} + /0! + C_{\sim} + /0! @ E_g^{exp} - E_g^{lda} \#,$$

where C(-/0)=0.78 and C(+/0)=0.67 are derived in the Appendix.

III. RESULTS

We carried out first-principles calculations for the following H-involving defects: nonsubstitutionally incorporated hydrogen H_i , substitutional hydrogen on Cu site (H_{Cu}) , hydrogen incorporated next to the copper vacancy $(V_{Cu}+H)$, and hydrogen incorporated next to the complex formed by an indium or gallium antisite plus two copper vacancies (III_{Cu} +

more electronegative compounds Mg-S,Se,Te! (Dx = 0.79–1.27) and GaN (Dx=1.23), H 0 takes up the tetra-

of H next to (III

ing place spontaneously, whereas incorporation from H2 is endothermic. This explains the experimental difficulty³⁸ with H incorporation from H_2 gas, and verifies that the use of atomic hydrogen is crucial.³⁸ We find in the latter case that the implanted hydrogen atoms can decorate copper vacancies inside Cu(In,Ga)Se2, causing formation of an internal hy-

drogen reservoir. To explain this point, we first consider the decoration of a defect D by a number m of H atoms or H_2 molecules. The resulting defect complex is denoted as D $+mH_n$, where n=1 and 2 for atomic and molecular hydrogen, respectively. The change in energy upon incorporation of m H_n species into $S = \text{Cu}(\text{In}, \text{Ga})\text{Se}_2$ next to defect D is termed as the hydrogen incorporation energy, given by

$$DE_D^{(m,n)} = E_{D+mH_n}^{(0)} - E_D^{(0)} - mn \sim m_H + m_H^0!, \qquad \sim 6!$$

where the zero of hydrogen chemical potential is set to the energy of H atom, i.e., $m_{\rm H}^0 = E({\rm H})$. We first note that D $+mH_n$ forms spontaneously if $DE_D^{(m,n)}$ is negative. We next consider incorporation of hydrogen into the host system S from some external hydrogen source. The top panel of Fig. 4 shows this situation schematically. The external hydrogen source -with chemical potential $m_{\rm H}^e$) pumps H into the system S if $m_{\rm H} < m_{\rm H}^e$ -otherwise hydrogen would lea00 0 9.9780 0 9.9780 0

tral H-involving defects: H_i , $(V_{Cu}+H)$, $+2H_2$), and $(V_{Cu}+4H_2)$. The incorporation en external reservoir of H2 is shown in the bottom pa on. It is seen that $DE_D^{m,n}$ can be positive or ne on the value of m_H . Hence, the range of two regions, as indicated by shading in $+mH_n$: $\sim i!$ $m_H^*(D+mH_n) < m_H$ and), where $m_{\rm H}^*(D+m{\rm H}_n)$ denotes ${\bf p}$ $\mathbf{F}^{m,n} = 0$. For external restat then D m_H has a takes place sp value within region -II!, then 2 - min acts an internal reservoir since $DE_D^{(m,n)} > 0$. Thus, the internal hydrogen reservoir forms in two stages characterized by the value of $m_{\rm H}$: The first stage involves spontaneous decoration of D by m H_n species @i.e., $m_{\rm H}$ adjusted to some value within region ~i! as in, e.g., implantation experiments 9,10,36,38# so that a significant amount of hydrogens is incorporated. In the second stage, the subsequent relaxation of the system following the implantation make $m_{\rm H}$ decrease to some value within region ~ii!, so that $D+mH_n$ acts as a reservoir. In this process,

conditions so that chalcopyrites may be utilized for hydrogen storage. The atomic weight percent of hydrogen, however, seems to be rather low @; 0.2-0.3% for 10% Cu deficient $Cu(In,Ga)Se_2$] for practical applications.

D. Hydrogen in nonstoichiometric p-Cu(In,Ga)Se₂

As we mentioned in Sec. IIB, the effect of hydrogen in nonstoichiometric chalcopyrite ~i.e., containing V_{Cu} and/or $III_{Cu} + 2V_{Cu}$) depends on the interplay between passivation and *n*-type doping. This can be explained in terms of reaction enthalpies for pairing of the defects in Cu(In,Ga)Se2, listed in Table IV. We see that pairing of $V_{\rm Cu}^-$ and ${\rm H_i^+}$ to form ${\rm H_{\rm Cu}^0}$ is endothermic, whereas it is exothermic for forming (V_{Cu} $+H_i$)⁰. Thus, hydrogen prefers to reside *next* to copper vacancy, as opposed to substitute the vacant Cu site. In systems where the negatively charged copper vacancies preexist, e.g., in chemically pure p-type Cu(In,Ga)Se₂, hydrogen will then be incorporated into the $(V_{\text{Cu}} + \text{H}_{\text{i}})^0$ defect complex. Since neutral $(V_{\text{Cu}} + \text{H}_{\text{i}})^0$ is electrically inactive, hydrogen will thus passivate *p*-type $Cu(In,Ga)Se_2$. Table IV also shows that pairing of H⁺ with $(III_{Cu}+2V_{Cu})^0$ to form donorlike $(III_{Cu} + 2V_{Cu} + H)^+$ is exothermic, whereas that of H⁻ to form acceptorlike $(III_{Cu} + 2V_{Cu} + H)^-$ is endothermic. Thus, similar to the case with $V_{\rm Cu}^-$, hydrogen prefers to be incorporated next to $({\rm III}_{\rm Cu}+2V_{\rm Cu})^0$. Hence, the incorporation of hydrogen into nonstoichiometric Cu(In,Ga)Se2 and the effect of H on electrical conduction are controlled by the amounts of preexisting intrinsic defects V_{Cu}^{-} and (III_{Cu} $+2V_{\rm Cu})^{0}$.

IV. 2V0.Ourl)Tjrst-p253cipleslstudyls0 0 6 mai5 0 0 2131 TD [(amductio.2.8(are)-548.ef)F4 9.8(contrf 0ed)-548f 0edTJ 6.985

 $G_{lda} q_1/q_2! = G q_1/q_2! + C q$

- Campos, A. Weidinger, M.V. Yakushev, and S.F.J. Cox, Physica B **326**, 181 -2003!.
- ³²C. Herring, N.M. Johnson, and C.G. Van de Walle, Phys. Rev. B 64, 125209 -2001!.
- ³³C. Wang and Q.-M. Zhang, Phys. Rev. B **59**, 4864 ~1999!.
- ³⁴J. Neugebauer and C.G. Van de Walle, Phys. Rev. Lett. **75**, 4452 -1995!.
- ³⁵Ç. Kılıç, L.-G. Wang, and A. Zunger ~unpublished!.
- ³⁶K. Otte, T. Chasse, G. Lippold, B. Rauschenbach, and R. Szargan, J. Appl. Phys. 91, 1624 -2002!.
- ³⁷S.B. Zhang, S.-H. Wei, and A. Zunger, J. Appl. Phys. **83**, 3192 -1998!.
- ³⁸ A. Weidinger, J. Krauser, Th. Riedle, R. Klenk, M.Ch. Lux-Steiner, and M.V. Yakushev, in *Hydrogen in Semiconductors and Metals*, edited by N. H. Nickel, W. B. Jackson, and R. C. Bowman, MRS Symposia Proceedings No. 513 -Materials Research Society, Pittsburgh, 1997!, p. 177.
- ³⁹S.B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. Lett. **84**, 1232 -2000!.
- ⁴⁰C. Stampfl, C.G. Van de Walle, D. Vogel, P. Krüger, and J. Pollmann, Phys. Rev. B 61, R7846 -2000!.