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The efficiency of CuInSe2 based solar cell devices could improve significantly if CuGaSe2, a wider band gap
chalcopyrite semiconductor, could be added to the CuInSe2 absorber layer. This is, however, limited by the
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tween the host material and some atomic and electronic
reservoirs.7 Thus, the formation energy for a defect compris-
ing of atoms � in the charge state q can be computed using
the expression8,9

�HD,q�EF,�� = �ED,q − EH� + �
�

n��� + q�Ev + EF� . �1�

In the first term, ED,q and EH are the total energies of a solid
with and without defect D, respectively. The second term of
Eq. �1� represents the energy change due to exchange of
atoms with the chemical reservoirs. �� is the absolute value
of the chemical potential of atom �, and n� is the number of
such defect atoms; n�=−1 if an atom is added, while n�=1 if
an atom is removed. For example, the energy �HD,q�EF ,��
to introduce a D=VCu �Cu vacancy� is higher the greater is
the Cu chemical potential �Cu, since the Cu atom ejected
from the solid upon forming VCu must join the Cu reservoir
whose energy is �Cu. The third term in Eq. �1� represents the
energy change due to exchange of electrons and holes with
the carrier reservoirs. Ev represents the energy at the VBM of
the defect free system, i.e., the energy to remove an electron
from the VBM to Fermi reservoir, or to insert an electron



sible in the gap. This requires Cu-poor and In-rich �Se-poor�
conditions.

In order to study the limitations of n-type doping, we first
determine the optimum growth conditions for n-type doping
in CIS and CGS. We note that, considering an extended
range of chemical potentials, Rules �1�–�5� impose intrinsi-
cally conflicting requirements, e.g., the Cu-rich conditions
required by Rule �3� conflict with Rules �1�, �4�, and �5� in
case of Cd doping. However, only a limited range of chemi-
cal potentials of the host atoms is allowed thermodynami-
cally. We therefore must establish next the thermodynamic
limit on ��Cu, ��In/Ga, and ��Se, and examine then if Rules
�1�–�5� of Fig. 1 can be accommodated with no conflicts
within the limited, allowed range of ���	.

B. Restrictions posed by equilibrium chemical potentials

The chemical potentials �� are bound by the values that
maintain a stable host compound, and avoid formation of all
other competing phase �including their elemental solids�. We
will formulate these conditions in four steps. The procedure
is based on equilibrium conditions for the crystal growth.
When a nonequilibrium process is proposed, some constrains
should be re-evaluated.

�i� The atomic chemical potential should be smaller than
that of the corresponding elemental solid to avoid precipita-
tion of the latter. That is:

��Cu � 0; ��In,Ga � 0; ��Se � 0; �3�

or

�Cu � �Cu
solid; �In,Ga � �In,Ga

solid ; �Se � �Se
solid. �4�

The point ��=��
solid, corresponds to a “maximum �-rich

condition,” i.e., the chemical potential of � is equilibrium
with elemental � solids.

�ii� To maintain a stable compound the sum of chemical
potentials of its constituent atoms must equal the heat of
formation of the compound. That is

��Cu + ��In,Ga + 2��Se = �H�Cu�In,Ga�Se2�; �5�

or

�Cu + �In,Ga + 2�Se = �H�Cu�In,Ga�Se2� + �Cu
solid

+ �In,Ga
solid + 2�Se

solid. �6�

�iii� The chemical potentials are further restricted by re-
quiring that, other possible competing phases with Cu,
�In,Ga�, and Se do not form. For example, if Cu and Se
forms CumSen naturally, the following condition is applied:

m��Cu + n��Se � �H�CumSen� . �7�

The higher the number of conditions one adds to avoid com-
peting phases, the more realistic is the region of the atomic
potentials. For CIS we consider as competing phases InSe
�having mP8 structure in Pearson’s symbol�, Cu3Se2 �the
tP10 structure�, and CuIn5Se8 �type D in Ref. 10�, while
for CGS we consider GaSe �the hP8 structure�, Cu3Se2,
and CuGa5Se8 �same structure as CuIn5Se8�. All of these



�10�. Thus ��Cd is limited by formation of CdSe for Cu-rich



D. Selecting optimal growth conditions for Cl, Br, I in CIS
and CGS

In the case of anion-site doping, some of the conflicting
requirements noted in Fig. 1 do remain, even if we consider
the restricted chemical potential range. Figure 3�b� shows the
contour plot for �H�ClSe�, where ��Se is maximized as far
as allowed by Eqs. �8� and �9�. Comparing Figs. 3�b�–3�d�,
we see that minimal �H�ClSe� required by Rule �1� is ob-
tained at “point P,” but maximal �H�VCu� and minimal
�H�InCu�, as required by Rules �3� and �4�, are both fulfilled
only at point N. We thus decided to use two different growth
conditions. Under the first strategy �“point P”� we will maxi-
mize the concentration of halogen, thus following Rule �1�.
This is consistent with Rules �2� and �3�, but conflicts with
Rule �4�. We will refer to this as “halogen favored condi-
tions,” and “ClSe favored conditions” when the halogen dop-
ant is Cl. This gives values collected in Table I. “Point P”
corresponds to “Se, In intermediate, Cu-rich.”

Under the second strategy �“point N”� we minimize
�H�InCu� according to Rule �4�, which is referred as “InCu



energy difference between the neutral host and the host with
a VBM electron removed. We found that the energy differ-
ence converges to the eigenvalue of VBM, �VBM, in the limit
of dilute hole concentration. Therefore, �VBM could be used
as the value of VBM for the diluted defects along with a
potential alignment between two supercell calculations. This
is described in Sec. 1 in the Appendix.

�ii� LDA energy gap correction



�InCu is a double donor and, accordingly contributes 2cInCu
to

�c�. On account of the charge neutrality condition, the self-
consistent equilibrium Fermi energy EF

eq is pinned around
EF

n,comp in case of Cl doping �Fig. 4�. For n-type doping, EF
eq

generally needs to be high in the gap.
In order to compare our results with measured electron

concentrations for Cl and Cd doping in CIS, we perform an
additional self-consistent calculation for room temperature
�T=300 K�. It is assumed that due to kinetic barriers, the



should be as high as possible in the gap. At this point the
intrinsic donors tend to compensate the intrinsic acceptors.
Figure 4 shows the energy needed to form GaCu in CGS and
InCu in CIS. We see that �H�GaCu�	�H�InCu�. This reflects
the larger band gap of CGS. Note from Fig. 4 that the self-
consistently calculated EF

eq is therefore higher in the gap for
CIS than for CGS. Since, in the present case, the concentra-
tion of the ionized defects VCu

− , InCu
++ are much higher than the

carrier concentration, EF is pinned to the vicinity of the point

where the concentrations of the ionized defect alone yield



occurs between Ev and Ev−5 eV and has two peaks: the
deeper one is bonding Cu, d-Se, p and the upper one is
antibonding Cu, d-Se, p. The conduction band is made of
Ga, s-Se,p orbitals. Deeper in the valence band we find
the Ga, s-Se, p bonding states �Ev−6 eV�; the Se s-band
�Ev−14 eV�, and the Ga 3d band �Ev−16 eV�.

The projected density of states �PDOS� of the CdCu
0 and

CdGa
0 show strong similarities, with Cd,d-like resonance state

at ��Ev−9.0� eV. This is consistent with the atomic Cd,
4d-states which are �7 eV below the Cu,3d-states and
�5 eV above the Ga,3d-states. The Cd,d-Se,p interaction
yield pronounced Cd,d-like peaks also at ��Ev−13.5� eV
and ��Ev−3.0� eV. The PDOS of the CdCu

0 donor electron
states at ��Ev+2.5� eV is well above the experimental band-
gap energy of 1.68 eV. This indicates a shallow character of
the CdCu donor. The acceptor CdGa

0 , has its acceptor hole
states at the VBM �the s-like states at ��Ev+2.5� eV are
unoccupied�. The PDOS of CdGa show stronger PDOS at the
VBM, than of that of the CdCu donor.

V. TRANSITION ENERGIES

Table V shows the calculated transition energies accord-
ing to Eq. �11�. They are depicted graphically in Fig. 7. In
Fig. 7, we do not include the Makov-Payne correction since
the defect levels calculated here are rather shallow, and thus
the truncated multipole expansion18 is no good for the image
charge correction.

In Fig. 7, we show schematically the transition energies of
divalent doping of donors ��IICu,0 / + � and acceptors
��IIIII ,− /0�. The trend is that CGS has somewhat deeper
group-II donors than CIS, and this trend is more pronounced
for the group-II acceptors. However, the calculated transition
energies indicates that the group-II donors could be ther-
mally ionized both in CIS and in CGS. The multipole cor-
rection gives �0.1 eV deeper donor and acceptor level since
the correction increase the formation energy for charged
states. The multipole correction is probably somewhat over-
estimated for shallow defect, and one would expect that the
transition energies lies between the values with and without
this correction.

VI. DEFECT AND CARRIER CONCENTRATIONS:
CAN CGS BE DOPED n-TYPE?

Having calculated the optimal chemical potential growth
conditions �Secs. II C and II D�, the formation energy �Sec.
III A� and transition energy �Sec. III B�, we can now calcu-
late self-consistently the defect concentration and carrier
concentration. They are shown for divalent doping in CIS
and CGS in Fig. 8 and for halogen doping in Fig. 9. In case
of Cd-doping of CIS under Se-poor �“point N”� conditions,
and using a Cd chemical potential corresponding to equilib-
rium with CdSe �maximal ��Cd�, we find undesirably high
Cd incorporation. Therefore, we used a slightly lower ��Cd
�by 0.2 eV�.

TABLE V. Transition energies ��D ,q /q�� of substitutional neu-
tral and charged group-II donors and acceptors in CIS and CGS
relative to the CBM, Ec, for the donors and to the VBM, Ev, for the
acceptors. Values within bracket are the transition energies without
the Makov-Payne correction.

�q /q�� ��D ,q /q�� �eV�

CuInSe2 CuGaSe2

MgCu �+/0� Ec−0.14�−0.06� Ec−0.11�−0.02�
ZnCu �+/0� Ec−0.14�−0.06� Ec−0.20�−0.11�
CdCu �+/0� Ec−0.10�−0.00� Ec−0.18�−0.06�
MgIII �0/−� Ev+0.13�+0.05� Ev+0.15�+0.06�
ZnIII �0/−� Ev+0.05�−0.02� Ev+0.17�+0.07�
CdIII �0/−� Ev+0.07�+0.00� Ev+0.16�+0.07�

FIG. 7. Schematic picture of the transition energies �in units of
eV�



Using T=800 K,19 the calculated concentrations for the
“halogen favored” and the “InCu favored” conditions are
shown as a bar chart in Figs. 9�a� and 9�b�, respectively.
Here, the doping balance, e.g., �c=cClSe

+2cInCu
−cVCu

for Cl-
doping, indicates whether net donor doping ��c	0� or net
acceptor doping ��c
0� is obtained under the respective
conditions. We see that under “halogen favored” conditions
�Fig. 9�a��, the halogen donors have concentrations of about
1019 cm−3, but are overcompensated by Cu vacancies. The
sample ends up being p-type with net acceptor concentra-
tions in the 1017 cm−3 range �cf. Fig. 9�a��.

Under the “InCu favored” conditions, we find that the con-
centrations of the intrinsic defects InCu and VCu are practi-
cally independent on the type of the halogen dopant, being
present in only low concentration, halogen chalogen
�1017 cm−3 �Fig. 9�b��. In fact, cInCu

=2�1020 cm−3 and
cVCu

=3�1020 cm−3 are practically equal to the concentra-
tions obtained under Se-poor conditions without additional
halogen doping, and show a high compensation ratio. The
sample ends up being n-type with a net donor concentration
of �c=1018 cm−3 �Fig. 9�a��. In order to determine the re-
sulting free electron concentration at room temperature,22 we
perform another self-consistent calculation, now for T
=300 K, but maintaining the total concentrations of InCu and
VCu obtained for 800 K. The calculated carrier concentration
is ce�2�1014 cm−3, meaning that only a relatively small
fraction of electrons are thermally activated into the conduc-
tion band. This is a consequence of the high compensation
ratio and the ensuing very high total �neutral + ionized� con-

centration of donors. The calculated carrier concentration is
somewhat below the range of experimentally observed elec-
tron concentrations23 5�1015−1.5�1017 cm−3, probably be-
cause of a slight overestimation of the ionization energies
within the LDA supercell approach.

We find that the calculated electron concentrations at
room temperature are much lower than the net donor concen-
trations, i.e., ce�2�1014 cm−3 in the case of Cl and intrinsic
doping, and ce�2�1015 cm−3 in the case of Cd doping of
CIS. These numbers are below the maximal electron concen-
trations observed after Cl and intrinsic n-type doping, and
after Cd doping, being about 1017 cm−3 and 1018 cm−3, re-
spectively. We attribute this discrepancy mostly to a slight
overestimated of the donor ionization energies within the
LDA supercell approach. Nevertheless, these results qualita-
tively explain why the limit ce�1017 cm−3



already at a low value of EF=0.7 eV , it is not possible to
shift EF to higher values under equilibrium conditions. Thus,
future attempts should focus on nonequilibrium conditions,
in which the atomic Cu reservoir is decoupled.
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APPENDIX : TECHNICAL DETAILS ON HOW TO
CALCULATE DEFECTS ENERGIES IN THE LDA

SUPERCELL APPROACH

Determining the valence-band maximum

In this section, we show how the energy of the VBM, Ev,
in Eq. �2� is determined from the total energy of the charged
pure host crystal: The formation energy of charged defects
depends on the Fermi energy. In a nondegenerate system, the
Fermi energy lies in the band-gap energy region. It is, there-
fore, convenient to determine the energy of the VBM, Ev,
and regard the Fermi energy EF as a free parameter 0�EF
�Eg.

We define the energy of the VBM, Ev, as the energy dif-
ference between the pure host crystal with and without a hole
at the VBM, i.e.,

�EH�q� = �EH�0� − EH�q��/q , �A1�

where q is the number of electro1 Tf
13hlremov.1(a(0.8787(-332.f-665.4(D)e.9(the)-336.9(ener)17.9(gy)-39)Tj
/F4 1 Tf
2.8-35A3between)-255(of)-433529remov.16r)17.9(gy)6r



� jk is the electron occupation number at level j, reciprocal
point k. For example: ze�D ,q�=1 for shallow neutral diva-
lent donors �e.g., ZnCu

0 �, while ze�D ,q�=0 for shallow
charged divalent donors �e.g., ZnCu

+ �, and ze�D ,q�=2 for
shallow neutral double donors �e.g., GaCu

0 �, and ze�D ,q�=1
for shallow partially charged �q=+� double donors �e.g.,
GaCu

+ �, and ze�D ,q�=0 for shallow charged �q= ++� double
donors �e.g., GaCu

++�. Analogously, zh�D� is the number of ac-
ceptor holes occupying the acceptor states near or below the
host VBM.

If the VBM is shifted downward by �Ev, one also has to
shift the reference energy Ev in Eqs. �2� and �11� by

Ev = Ev
LDA − �Ev, �A4�

and this correction will affect the formation energy of
charged defects due to the term q�Ev+EF� in Eq. �2�.

Band filling correction

The formation and transition energies of dopants are nor-
mally referenced to a doping concentration in the dilute limit
i.e., �1018 cm−3. However, for a single defect in a finite
supercell calculation, the defect concentration is much
higher, e.g., �1021–1022 cm−3 in a 64-atom supercell. The



energy of a periodically repeated electrically charged system
diverges, and thus a jellium background is adopted to neu-
tralize the charge in general. Makov and Payne18 argued that
the charge density in a crystalline solid with a point defect
can be the sum of two contributions—the periodic charge
density of the underlying crystalline solid and the charge
density of the aperiodic defect, which is the charge differ-
ence between with and without the defect. The multipole
correction �Emp of the total energy of a practical finite su-
percell with respect to the total energy of an ideal infinite cell
of a charged aperiodic system is18

�Emp�D,q� = +
q2�M

2�0Vc
1/3 +

2�qQ

3�0Vc
+ O�Vc

−5/3� . �A7�

Here, �M is the lattice-dependent Madelung constant and Vc
is the volume of the cubic supercell. �0 and Q are properties
of the periodic density and the aperiodic density; �0 is the
static dielectric constant and Q is the second radial moment
only of that part of the aperiodic density. The first and second
correction terms in Eq. �A7� are the monopole and quadru-
pole corrections, respectively. Typically, the quadrupole cor-
rection is �30% of the monopole correction with opposite
sign. In principal, also higher order of the multipole correc-
tion should be included.

We notice that Eq. �A7� is based on the assumption that
defect charge is rather localized. However, the defect charge

of very shallow levels might be rather delocalized, and the
restriction to monopole and quadrupole corrections in Eq.
�A7� may not be sufficient, i.e., higher order terms may be
needed. In the limit of completely delocalized charges, the
multipole correction should be zero since an uniform elec-
tron gas does not have a net charge moment. One can there-
fore argue that the Makov-Payne correction is the upper limit
of correction for shallow defects. We therefore present the
formation and transition energies both with and without the
multipole correction.

As in the case of the correction for the band-filling �see
above�, the multipole correction should be zero �or at least
smaller� if one intentionally calculates total energies of
heavily doped semiconductors. For those highly doped sys-
tems, the choice of assuming periodic instead of, for in-
stance, randomly distributed donors may however have an
effect on the impurity-impurity interaction.

With the corrections above, the total energy of the crystal
with a defect is

E�D,q� = EFSC
LDA�D,q� + �Ebf�D,q� + �Emp�D,q� + �Epa�D,q�

+ �Eg�D,q� , �A8�

where EFSC
LDA�D ,q� is the LDA total energy of the finite super-

cell with the defect �see Fig. 11�.
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