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Finding the most stable structure of a solid is one of the central problems in condensed matter physics. This
entails finding both the lattice type �e.g., fcc, bcc, and orthorhombic� and �for compounds� the decoration of the
lattice sites by atoms of types A, B, etc. �“configuration”�. Most approaches to this problem either assumed that
both lattice type and configuration are known, optimizing instead the cell volume and performing local relax-
ation. Other approaches assumed that the lattice type is known, searching for the minimum-energy decoration.
We present here an approach to the global space-group optimization �GSGO� problem, i.e., the problem of
predicting both the lattice structure and the atomic configuration of a crystalline solid. This search method is
based on an evolutionary algorithm within which a population of crystal structures is evolved through mating
and mutation operations, improving the population by substituting the highest total-energy structures with new
ones. The crystal structures are not represented by bit strings as in conventional genetic algorithms. Instead, the
evolutionary search is performed directly on the atomic positions and the unit-cell vectors after a similarity
transformation is applied to bring structures of different unit-cell shapes to a common basis. Following this
transformation, we can define a crossover operation that treats, on the same footing, structures with different
unit-cell shapes. Once a new structure has been generated by mating or mutation, it is fully relaxed to the
closest local total-energy minimum. We applied our procedure for the GSGO in the context of pseudopotential
total-energy calculations to the semiconductor systems Si, SiC, and GaAs and to the metallic alloy AuPd with
composition Au8Pd4. Starting from random unit-cell vectors and random atomic positions, the present search
procedure found for all semiconductor systems studied the correct lattice structure and configuration. In the
case of Au8Pd4, the search retrieved the correct underlying fcc lattice, but energetically closely spaced
��2 meV/at.� alloy configurations were not resolved. This approach to GSGO opens the way to predicting
unsuspected structures by direct optimization using, in the cases noted above, an order of 100 total-energy ab
initio calculations.
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I. INTRODUCTION

A central feature of the solid-state physics of crystalline
solids is the existence of a very rich diversity of stable crys-
tal forms,1,2 distinguished by their lattice type �e.g., fcc, bcc,
hcp, and monoclinic� and by the pattern of occupation of the
lattice sites by atom types �“configuration” or “decoration”�.
Indeed, a central theme in theoretical physics of crystalline
solids is the quest for prediction of the stable crystal struc-
tures of a given A-B �or more complex� periodic solid.3–7

While early attempts were based on correlating observed
structures with elemental scales such as electronegativity,4

orbital radii,5,6 or electron-atom ratio,7 modern attempts are
all based on optimizing the quantum-mechanical total energy
of a solid as a function of its structural degrees of freedom.
One can recognize three basic types of searches for stable
crystal forms distinguished by the level of restriction im-
posed on the structural degrees of freedom being optimized.

Type-I optimization involves cases where both the lattice
type and the configuration �decoration of sites by A- or
B-type atoms� are assumed at the outset. This includes opti-
mization of the unit-cell volume in known structures,8–10 op-
timization of cell-external degrees of freedom �e.g., c /a te-
tragonal ratio�, and symmetry-undetermined cell-internal
atomic relaxations in solids of known structure types.10,11

The optimization methods used for such type-I problems are
continuous position-space optimization such as gradient-

guided searches12 and conventional13 and Car-Parrinello14

molecular dynamics. These methods have a good local vision
but are not concerned with global optimization. Essentially,
one looks for the nearest local minimum of a more or less
known structural topology. More complex examples of type-I
optimization include relaxation of surface structures for
given semiconductor topologies15 and local relaxation
around a point defect in semiconductors.16 A solution to
type-I optimization problems has led to the establishment of
the equation of state of numerous materials in known
structures8,10,11 as well as to the discovery of surface recon-
struction patterns of given semiconductor surface
topologies15 or to the local geometry of the leading defect
structures in semiconductors.16

Type-II optimization involves cases where the lattice type
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number of local activation barriers. Solution to type-II opti-
mization problems has led to the discovery of many previ-
ously unknown ground-state configurations in fcc-based21

and bcc-based22,23 alloys via search of lowest-energy cluster
expansion �Ising type� Hamiltonians.24

Type-III optimization problems involve cases where nei-



structural motifs present in the parents to propagate to the
children. To favor the propagation of such local structural
motifs to the offspring, we mate two crystal structures using
a cut-and-splice procedure which generates a child structure
by matching real-space segments of two parent lattice con-
figurations �see Sec. III B�. For mutation, given a structure,
we generate a new one altering randomly the atomic posi-
tions and/or the cell vectors �see Sec. III C�. In multispecies
systems, we also explore the configuration that corresponds
to a given lattice structure by atom swaps �see Sec. III D�.

Third, candidate structures obtained by mating and muta-
tion may represent chemically unreasonable configurations
�e.g., pathologically short bond lengths�. Progressing with
genetic algorithm �GA� evaluation on such structures may
thus take very long to converge. To accelerate convergence,
two operations are performed: �i� we screen the offspring,
rejecting the newly generated structures that have unphysi-
cally short atomic distances or unit cells with cell vectors
that are too short or cell angles that are too small �see Sec.
III E�; �ii� we perform total-energy structural relaxation on
the mated and/or mutated lattice configurations to obtain the
closest local equilibrium structure �see Sec. III F�.

III. THE METHOD IN MORE DETAIL

A population of Npop crystal structures is defined, where
each structure S= �a1 ,a2 ,a3 �r1 , . . . ,rN� contains in the unit
cell N atoms of Ntype atomic types, and is specified by the
triad of lattice vectors �a1 ,a2 ,a3� and by the atomic positions
�ri�, where i=1, . . . ,N. The population evolves through a se-
ries of generations, each one consisting in replacing the Nrep
highest-energy structures with new ones produced by mating
or mutation through the following steps.

A. Creating common shapes: Similarity transformation

As a preliminary step to both the mating and the mutation
operations, the atomic positions ri are transformed to the
fractional coordinates33 si defined by the relation ri=Asi,
where A= �a1 ,a2 ,a3� is the 3�3 matrix of the lattice vectors.
If B is the matrix defined by

B = �b1,b2,b3� = A−1, �1�

then the relation

si = Bri �2�

holds between the fractional coordinates si and ri. Such a
transformation maps the original cell shape onto a cubic cell
whose cell vectors have unitary length, whereas the reduced
coordinates �si

�1� ,si
�2� ,si

�3�� are between 0 and 1. The represen-
tation of the crystal structures in terms of fractional coordi-
nates makes it easier to formulate a procedure for mating
�see Ref. 33� two structures �“parents”� that have different
cell shapes and generating a new �“child”� structure.

B. Real-space mating: Cut-and-splice crossover

Let us consider the two parent geometries S1
�p� and S2

�p�

chosen randomly among the structures in the population: the

child structure S �c� is created using a procedure based on the



decorations of the sites. If the numbers of sites per cell is
small, one could enumerate all configurations and evaluate
the fitness for each of them. If the number of sites is large,
we start from the configuration that a newly generated indi-
vidual inherits by mutation or mating and perform on it a
series of atom swaps, i.e., a series of permutations of the
position of pairs of unlike atoms, to produce a new configu-
ration. Usually, in the calculations that are presented in the
following, we performed up to ten atom swaps per newly
generated structure.

E. Screening of the offspring

A structure produced by crossover or mutation is rejected
whenever it contains the wrong number of atoms or does not
have the composition that is considered for that compound.
Moreover, it might also happen that the structures that result
from the crossover or the mutation contain atoms that are too
close to each other or have the unit cell with angles that are
too small or cell vectors that are too short. Therefore, a
newly generated structure is included in the population only
if �i� the nearest-neighbor atomic distances are longer than a
minimum distance dmin that is about 80% of the typical bond-
ing length in the system, �ii� the cell angles are between 45°
and 135°, and �iii� the cell-vector lengths are not shorter than
the typical bonding distance. Whenever a structure generated
by crossover or mutation does not meet these geometrical
requirements, the crossover or the mutation is repeated until
a valid configuration is obtained.

F. Refinement

After the child structure is accepted in the population, its
cell shape and the atomic positions are relaxed to the nearest
total-energy local minimum and the equilibrium total-energy
is assigned to it as fitness score. In the present work, the total
energy is represented by the pseudopotential plane-wave ap-
proach to the local-density approximation40 with computa-
tional parameters described in the Appendix. To fully relax
the new structure, we employ a conjugate-gradient algorithm
that uses the gradients with respect to the atomic positions
�i.e., atomic forces40� and the gradients with respect to the
cell vectors �i.e., components of the stress tensor41�. This
relaxation32 performed on each individual in the population
makes the present optimization procedure more efficient in
surveying the searchsearchu(o)-4cn



structure produced. Following Sec. IV, taking the volume V
=160 Å3 and grid resolution �=2.0 Å, we estimate that the
number of possible configurations in the search space is Q
=1.3�105. In Fig. 2�a�, we show the history plot of the
evolutionary algorithm search. The diamond structure was
correctly found as the lowest-energy structure in about 15
generations, i.e., by performing the ab initio structural relax-
ation of about 60 structures. Along with diamond �see Fig.
2�b��, the GSGO search found the lonsdaleite structure �see
Fig. 2�c�� as a local minimum with an energy that is about
10 meV/at. higher than that of diamond.

B. SiC

SiC is a binary semiconductor system which is stable to-
ward decomposition in its elemental constituents: this is
mostly due to the larger stability of the Si–C bond with re-
spect to the Si–Si and the C–C bonds.44 The history plot of
the GSGO run is shown in Fig. 3�a�. In this case, we in-
cluded eight atoms in the search and took Npop=12 with
Nrepthe 1.3

a



energy structures have been replaced at each generation. The
GSGO search correctly retrieved the zinc-blende structure as
the lowest-energy one in less than 20 generations, i.e., about
70 ab initio structural relaxations.

D. AuPd

In metallic alloys, the difficult task is to identify the stable
lattice decoration as there is usually a small energy differ-
ence between different atomic configurations.22,23 For this
reason, metal alloys were traditionally treated by cluster ex-
pansion methods21–24 that, while restricting the consideration
to one lattice type at the time �i.e., type-II problems�, retain a
high numerical accuracy ��5 meV/at.� over a large range of



space. To define a mating operation between structures that
have different cell shapes, all cell shapes are brought to a
common basis using a similarity transformation. Once a
structure is generated by the evolutionary operators, it is re-
fined via a total-energy relaxation which brings it to the near-
est total-energy local minimum. The approach to the GSGO
problem described in this paper shares several steps with
other optimization procedures presented in the recent litera-
ture, but it also shows different traits with respect to them.
Indeed, in assigning the cell vectors to a child structure, we
proceed by a linear combination of the cell vectors of the
parents. This favors inheritance by the offspring of the infor-
mation on the cell shapes of the parent structures. Also, par-
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