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Contemporary theories of defects and impurities in semiconductors rely to a large extent on supercell
calculations within density-functional theory using the approximate local-density approximation �LDA� or
generalized gradient approximation �GGA� functionals. Such calculations are, however, affected by consider-
able uncertainties associated with: �i� the “band-gap problem,” which occurs not only in the Kohn-Sham
single-particle energies but also in the quasiparticle gap �LDA or GGA� calculated from total-energy differ-
ences, and �ii� supercell finite-size effects. In the case of the oxygen vacancy in ZnO, uncertainties �i� and �ii�
have led to a large spread in the theoretical predictions, with some calculations suggesting negligible vacancy
concentrations, even under Zn-rich conditions, and others predicting high concentrations. Here, we critically
assess �i� the different methodologies to correct the band-gap problem. We discuss approaches based on the
extrapolation of perturbations which open the band gap, and the self-consistent band-gap correction employing
the LDA+U method for d and s states simultaneously. From the comparison of the results of different
gap-correction, including also recent results from other literature, we conclude that to date there is no universal
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interaction-correction �SIC� �Ref. 24� method has been ap-
plied in various different formulations for band-gap
correction.25–28 While very accurate methods, such as the
GW method, are yet not practically applicable to total-energy
calculation of large-scale defect systems, approximate or
model methods continue to be tested for their accuracy.29

The advances and limitations of different orbital-dependent
DFT approaches such as OEP, hybrid DFT, and SIC are dis-
cussed in a recent review.30 At the present, such post-LDA
methods have not matured to replace LDA based total-energy
calculation of large, relaxed, and possibly charged defect
systems, because of issues of both accuracy and computa-
tional cost.

�ii� Corrections due to the supercell approximation �see
Sec. IV�. Even large supercells at the limit of today’s com-
putational capabilities ��1000 atoms� for first-principles
quantum-mechanical calculations correspond to very high
concentrations of 1019–1020 cm−3 for semiconductor stan-
dards. The calculation of the properties of isolated defects
�e.g., 1014 cm−3� requires, therefore, the correction of finite-
size effects present in supercell calculations, especially in the
case of charged defects31 or when Moss-Burstein-type band-
filling effects32 occur, as in the case of shallow electron do-
nors or acceptors.

Different schemes and procedures for correcting LDA er-
rors and supercell-size effects have led in some cases to
strongly varying predictions by different theory groups. Most
notably, there is a recent controversy concerning oxygen va-
cancies in the wide-gap semiconductor ZnO,6,7,33–41 which
exhibits a particular severe band-gap problem. This contro-
versy is illustrated in Fig. 1, showing recent theoretical re-
sults on the formation energy of VO, which controls the
O-deficient off-stoichiometry of ZnO. On one extreme end,
Janotti and van de Walle37,40 and Lee et al.38 predicted very
large formation energies for VO in n-type ZnO, even under
the most O-poor/Zn-rich conditions. Such high values of
�H�



tional effort. In Sec. IV B, we test and illustrate the impor-
tance of Moss-Burstein-type band-filling effects5 that occur
when electrons �or holes� occupy strongly dispersive host-
derived band states. The slow convergence with supercell
size necessitates the correction of these band-filling effects if
one is interested in defect formation energies in the dilute
limit. We further discuss the cell-size dependence of the
defect-state–host-band hybridization and the implications for
the correct determination of the single-particle energies of
the genuine defect states, which have to be distinguished
from the host-derived bands that are perturbed by the pres-
ence of the defect.

Finally, we review in Sec. V the experimental situation of
O deficiency in ZnO in the light of the theoretical contro-
versy, finding that experimental evidence strongly suggests
the thermodynamic formation of O vacancies in ZnO under
O-poor/Zn-rich conditions at concentrations on the order of
1017 �Ref. 58� or 1018 cm−3.59,60 Thus, ZnO shows a similar
tendency toward O deficiency as the related oxides In2O3,61

SnO2,62 and MgO.63 The ubiquitous existence of O vacancies
in main-group oxides is thus a crucial benchmark of the va-
lidity of different methodologies to correct for band-gap and
finite-size effects in supercell defect calculations.

II. GENERAL FORMALISM OF SUPERCELL DEFECT
CALCULATIONS

A. Defect formation energies

Within the supercell formalism for the representation of
defects in a host lattice, the defect formation energy of a
defect D in charge state q is defined as

�HD,q�EF,�� = �ED,q − EH� + q�EV + �EF� + �n����
0 + ���� ,

�1�

where ED and EH are the total energies of the host+defect
and host-only supercells, respectively.

1. Energy of the valence-band maximum

EV=EH�0�−EH�+1� is defined as the energy difference be-
tween the pure host �q=0� and the host with one hole �q=
+1� in the valence band in the dilute hole gas limit.5 Thus,
Eq. �1� describes the enthalpy of the defect formation reac-
tion conserving the charge. E.g., for a singly charged donor
and �EF=0, this reaction is

DR + HH + h+ → DH
+ + HR,

where DR denotes the donor atom in its chemical reservoir
�before defect formation�, HH denotes a host atom at its na-
tive lattice site, and h+ denotes a hole at the valence-band
maximum �VBM�.

2. Fermi energy

EF is conventionally defined with respect to VBM, EF
=EVV �� .EVVV,



value ei
� due to the elimination of self-interaction and the

reduction in screening upon the electron removal, during
which the initial-state wave functions are kept fixed �denoted
by the asterisk�. Second, the relaxation contribution �i is the
energy gain during relaxation of the initial-state wave func-
tions. Comparing with the Hartree-Fock �HF�



those results in Sec. III E that rely on LDA+U. Since we
used in Refs. 6 and 7 LDA+U only to determine the band-
edge shifts �see Sec. III B� but not to calculate supercell en-
ergies, these results did not suffer from the problem of an
undefined heat of formation in LDA+U.

D. “Postprocessor” corrections to supercell energies

In Secs. III and IV below, we assess corrections for defect
supercell energies that are related to the band-gap error
�BGE� and to supercell-size effects �SSEs�. While various
approaches for such corrections have been suggested and
used in the previous literature,5,9,31,34,39,40,45,48–50,52,54,94 we
give here a summary for the specific formulation of the set of
corrections used by us, as introduced before �except Sec.
II D 5 below� in the Appendix of Ref. 5.

1. Shifting the individual band-edge energies of the host (BGE)

Due to the band-gap problem of the approximate LDA
and GGA functionals �see Sec. III A�, one needs to determine
the corrections �EV for the VBM and �EC for the CBM such
that the experimental band gap is recovered, Eg�expt�= �EC
+�EC�− �EV+�EV�. In the case of charged defects, these
corrections increase the range of possible formation energies,
as �H depends linearly on the Fermi level EF inside the gap
�see Eq. �1��. The determination of the required shifts of the
band-edge energies is discussed in Sec. III B.

2. Shifting shallow levels with the respective host bands (BGE)

Once the band-edge states are corrected, the question
arises as to how defect levels would be affected by the band-
gap correction. While it is common practice to refer donor
states to the CBM and acceptor states to the VBM, it is
important to realize in which situations this procedure is jus-
tified and in which it is not. A lattice defect in a semiconduc-
tor generally creates a primary, defect-localized state �DLS�.7
If this DLS occurs in the gap, the defect is deep. In contrast,
the hallmark of shallow defects is that their DLS occurs as a
resonance inside the continuum of host bands; e.g., the DLS
of a shallow donor lies inside the conduction band. In this
case the introduced electron relaxes from the DLS to the
band edge, occupying a secondary, delocalized perturbed-
host state �PHS�,7 which is essentially the electronic state of
the CBM of the host, perturbed only by the screened Cou-
lomb potential of the charged dopant ion. Thus, in the case of
shallow defects, the occupied donor �acceptor� states can be
expected to shift along with the CBM �VBM� during the
band-gap correction, leading to an energy correction of
ze�EC �−zh�EV� for �H when the donor �acceptor� state is
occupied by ze electrons �zh holes�. This correction is ap-
plied, e.g., to the shallow TeAs donor in GaAs �see Sec.
IV B�. In the case of deep defects, the primary defect state,
i.e., the DLS, occurs as a state inside the gap. The gap cor-
rection for this class of defects cannot be directly linked to
the behavior of the host-band edges. In Sec. III, we discuss
methods of determining corrections for such deep defects
and propose a general classification scheme for distinguish-
ing the cases that need different treatment for LDA correc-
tion.

3. Band-filling correction (SSE)

Due to the high defect concentrations implied by typical
supercell calculations, Moss-Burstein-type band-filling
effects32 are present in the case of shallow defects where the
carriers occupy the strongly dispersive PHS. In order to re-
cover the dilute limit for �HD



5. Charged supercells without a reference point for potential
alignment (SSE)

As we demonstrate in Sec. IV A, the potential-alignment
correction described above is an essential part of our robust
scheme for correcting supercell finite-size effects for �H of
charged defects. However, this method is not applicable in a
situation where there is no hostlike reference point far from
the perturbation by the defect. Consider, for example, the
case of an alloy where one adds electronic charge which is
supposed to be compensated by a jellium background. Due
to the compensating background, the system as a whole is
charge neutral, so the total energy should be well defined.
Our finding that the total energy of charged systems shows
the same arbitrary offsets as the single-particle energies5 im-
plies that the energy evaluated with the usual expressions in
Ref. 69 does not represent the energy of the �overall neutral�
charge+jellium system. The energy contribution due to this
interaction between the additional electronic charge and the



atoms �cell size� over which the additional electron or hole103

is distributed, i.e., as a function of the carrier density. We see
in Fig. 2�a� that EQP converges to the single-particle gap at
the Brillouin-zone center, eKS���=eC���−eV���, in the limit
of a dilute gas of free electrons and holes. Thus, for approxi-
mate functionals such as LDA or GGA, the quasiparticle gap
EQP

LDA shows the same band-gap error as the single-particle
gap eKS

LDA. For finite carrier densities, the apparent band gap
is larger than the direct ZnO gap at the � point, due to band-
filling effects �see Sec. II D 3, Eq. �6��. When comparing the
quasiparticle gap with the appropriate Brillouin-zone average
�BZ av� of the single-particle energies,

eg�BZ av� = �
k

wk�
C,keC,k
� − 
V,keV,k

� � , �13�

we see in Fig. 2�a� that the quasiparticle and single-particle
gaps are still practically identical in GGA except for ex-
tremely large electron and hole densities. �As in Sec. II B,
the asterisks in Eq. �13� denote that the eigenvalues eC

� and
eV

� are determined with the wave functions of the initial neu-
tral state.�

Considering that I=−eV
2 �



whereas the upward shift of the CBM by �EC causes in-
creased �H�D+� for Fermi levels high in the gap, thereby
increasing the range of possible formation energies. One
component in the VBM shift �EV is due to self-interaction
effects in occupied metal d shells whose orbital energies are
generally too high in LDA and GGA. If such d states occur
in the LDA calculation close to the VBM, e.g., in the case of
Zn in ZnO �Refs. 6, 7, 39, and 40� or Cu in CuInSe2 �Refs. 5,
8, and 79� or Cu2O,83,86,110 the VBM energy can be expected
to lie too high in energy as well, due to p-d repulsion80

between the metal d states and the anion p states in the
valence band. Therefore, we used in Refs. 6, 7, 79, 83, and
110 the LDA+U �or GGA+U� method for the metal d states
to determine the correction �EV for the VBM.

We emphasize here that the individual band-edge shifts
�EV and �EC, which determine the corrections for the
charged-defect formation energies �see Fig. 3�, need to be
determined with respect to a bulk-internal potential refer-
ence. When �EV and �EC are determined, a constant shift of
the potential due to a bulk-external source �e.g., the capaci-
torlike potential step due to a surface or interface dipole�
needs to be avoided. This is because a constant shift of the
external potential does not only shift the band-edge energies
EV and EC but also the electrostatic energy of the charged
defect, e.g., E�D+� in Eq. �1�, so that the charged-defect for-
mation energy �H�D+�, in fact, remains invariant. Such an
undesired shift of the external potential can occur when, as
done in Ref. 111, a ZnO�LDA� /ZnO�LDA+U� interface is
constructed that can lead to the development of an interface
dipole. Since the ensuing potential step causes a contribution
to the VBM shift, it affects, e.g., �H�D+� in Eq. �1� via the
term EV, and an error in �H�D+� is introduced when the
corresponding change in E�D+� due to the potential step is
neglected.

Using a self-consistent method such as LDA+U, it is dif-
ficult, in principle, to determine the change in the band-edge
energies with respect to an internal potential reference, since
this reference can change during the self-consistent calcula-
tion as well. Therefore, we determined in Refs. 6 and 7 the

change in the VBM energy in ZnO relative to the deep anion
s state �1v, which has a1 symmetry �in zinc-blende
notation112� and does not directly couple to the eg and t2
symmetries of the metal d states on which the LDA+U
method was used. Also, we confirmed that the results were
very similar when the anion-site average potentials �see Sec.
II D 4� were used as a potential reference. Our finding of
�EV between −0.8 eV �LDA� and −0.7 eV �GGA� for U
=7 eV �J=0� �Refs. 6 and 7� is consistent with the GW
result of �EV=−0.5 eV.12 �Note that in this GW calculation
the band gap and the too shallow Zn d band energies were
not completely corrected.�



tonian HH via a multiplier 0���1, the host-band �single-
particle� energies en,k are moved into direction of the correct
experimental energies:

en,k��� = 
�n,k�HH��n,k� + �
�n,k��HP��n,k�

= en,k�0� + �
�en,k���

��
. �16�

If the same perturbation is applied to the “host+defect” sys-
tem �HH+�HD�, one finds the �single-particle� energy eD of
the defect state as

eD��� = 
�D�HH + �HD��D� + �
�D�n ,k



entirely different predictions for the defect level of VO. Thus,
it is essential to choose a perturbation that reproduces a
physically correct band structure after extrapolation, not just
a correct band gap �cf. condition �a�



we now compare and assess the results of different band-gap
correction schemes.

1. “Band-edge-only” correction

Considering that the appropriate correction for the energy
levels of localized defect states is generally independent of
the band-edge corrections �EV and �EC of the host, as dis-
cussed in Sec. III C, and taking into account the general ob-
servation that localized defect states do not respond as
strongly to external perturbations �e.g., pressure� as do the



magnetic-resonance �ODMR� experiments �see also below,
Sec. III E 3�.

According to the discussion in Sec. III C, the reason for
the large differences between the Ud- and Us-extrapolation
schemes lies in the fact that in either case only the difference
eC−eV is corrected, whereas the energies of states other than
the CBM and the VBM, including those with large contribu-
tions to expansion �15�, are extrapolated to different and not
necessarily physically correct energies. Indeed, in the
Ud-extrapolation scheme, the Coulomb parameter for Zn d
was extrapolated to an unphysically large value of U
=17.4 eV in Refs. 37 and 40, leading to an extrapolated
energy of the Zn d band at EV−10 eV, considerably deeper
than the experimental position between EV−7.5 eV �Ref.
127� and EV−8.8 eV.128,129 Apart from the d-band energies,
other materials properties are also extrapolated to unphysical
values; e.g., the extrapolated lattice constant is more than 7%
smaller than the experimental one.37,40

In Ref. 40, Janotti and van de Walle suggested that defect
levels follow the corrections of the VBM and of the CBM in
proportion of the fractions VB and CB=1−VB, respectively
�cf. the coefficients AC

2 and AV
2 in Eq. �20��, which are inter-

preted as measures of the valence- and conduction-band
characters. This assumption led them to speculate,40 “The
assumption that the transition levels associated with the oxy-

gen vacancy do not shift when the conduction band is cor-
rected is equivalent to saying that the a1 state has purely
valence-band character.” However, as we showed in Sec.
III C, localized defect states cannot be decomposed into just
two contributions from the valence- and conduction-band
states. Due to the incompleteness of the limited expansion in
Eq. �19�, the correction of the defect state cannot be directly
linked to the corrections of either the VBM or the CBM, or a
combination thereof in fractions VB and CB=1−VB. Since
localized deep levels are constructed from valence- and/or
conduction-band states from throughout the Brillouin zone
�see Sec. III C�, their behavior during the band-gap correc-
tion depends on the detailed behavior of the entire band
structure upon applying the perturbation. Indeed, it is the
different behavior of states other than the VBM and the
CBM that leads to the extremely different predictions of dif-
ferent perturbations �e.g., LDA+Ud versus LDA+Us� for the
extrapolated energy of the VO defect level in ZnO �see Table
I�.

In the Ud-extrapolation method, our calculated transition
energy of the ��2+ /0�=EV+1.9 eV level lies somewhat
lower in the gap than in Ref. 37, despite the nominally iden-
tical parameters used here �see Table I�. This difference is
mainly due to the application of image charge corrections in
the present work, which, as we show in Sec. IV A, yield

TABLE I. Comparison of different methods for determining the band-gap-corrected transition levels and
formation energies of VO in ZnO: LDA+UZn d+extrapolation �Ud extr.�, LDA+UZn s+extrapolation �Us

extr.�, LDA+UZn s+UZn d �Us/d�, and LDA or GGA+band-edge-only correction ��EV+�EC�, as published in
Refs. 6 and 7. The Ud- and Us-extrapolation methods are based on calculations with Us=Ud=0 and Ud

=4.7 eV, as in Refs. 37 and 40, and Us=10 eV, which then are extrapolated. Given are the U parameters, the
��2+ /0� and ��+ /0� equilibrium transition energies, the single-particle energy esp of the a1 gap state of VO

0 ,
and the formation energy of VO

0 under Zn-rich ���Zn=0� and O-rich ���O=0� conditions. All numbers are in
eV and correspond to the band-gap-corrected situation, Eg=Eg�expt�. Image charge and potential-alignment
corrections were applied to charged supercell energies. Single-particle energies were determined from the
appropriate Brillouin-zone average �cf. Fig. 5 and Sec. IV B 2�.

Ud extr.
�LDA�a,b

Us extr.
�LDA�b

Us/d
�LDA�c,d

�EV+�EC
e

�LDA�d
�EV+�EC

f

�GGA�b

Ud 17.2 4.0 7.0 7.0

Us 37.3 38.0

��2+ /0�=E �

+



important contributions to the defect formation energy. Omit-
ting these corrections,40 we would extrapolate the transition
level to ��2+ /0�=EV+2.3 eV, close to the result of Refs. 37
and





corrections should be applied to the defect formation energy.
For example, a shallow-donor state is formed when the pri-
mary DLS occurs as a resonance inside the conduction band
and releases the electron into the host conduction band. The
resulting unoccupied �ionized� charged donor leads to the
formation of a shallow, effective-mass-like secondary state,
i.e., the perturbed-host state �PHS�.7 Since, however, the do-
nor concentrations corresponding to usual supercell sizes on
the order of �100 atoms correspond normally to the case of
degenerate doping, the PHS does not appear as a gap state in
the calculation. Instead, Moss-Burstein-type band-filling ef-
fects raise the Fermi level above the CBM. These band-
filling effects are associated with a considerable and strongly
supercell size-dependent increase in the donor formation en-
ergy, and need to be corrected to obtain the formation energy
for the situation of dilute doping. In the case of deep defects
where the primary defect state �i.e., the DLS� occurs inside
the band gap, such size-dependent band-filling effects do not
exist �see Sec. IV B 1�.

In Fig. 6, we distinguish three general types of defect
behaviors which require different treatments when the band
gap is corrected. The VO defect in ZnO is a remarkable de-
fect in the sense that it assumes all three behaviors when the
charge states is increased from 0 to 2+.

Type I: Shallow behavior before gap correction and shal-
low behavior after gap correction �Fig. 6, left�. If the pri-
mary DLS lies so high in energy that it exceeds the energy of
the CBM even after the shift of the CBM by �EC �Fig. 6,
left�, it can be expected that it is still resonant inside the
conduction band after the band-gap correction. Since, the
PHS that carries the donor electron is derived from the host-
band structure, it can be expected that PHS-like donor levels
follow the correction of the CBM. Therefore, the “shallow-
donor correction”5 �see Sec. II D 2� should be applied; i.e.,
the formation energy is to be corrected by ze�EC, where ze is
the number of electrons occupying the PHS �e.g., ze=1 for
the shallow TeAs donor in GaAs in its charge-neutral state;
see Sec. IV B 1�. This situation corresponds to example �2�
in Fig. 3. Due to the defect-to-host �DLS-to-PHS� charge
transfer, the occupied donor state



convergence of elastic energies, potential-alignment effects,
image charge interactions, and band-filling effects. Defects
with large lattice relaxations have a considerable contribu-
tion to their formation energy due to elastic energies, which
depend on the supercell size. However, such elastic energies
can usually be explicitly converged in supercells of afford-
able sizes. For example, �H of the fully relaxed neutral O
vacancy in ZnO differs by only 0.05 eV between a 72-atom
and a 576-atom supercell �Fig. 5�, despite the large lattice
relaxation of this defect. Similarly, in the case of the triply
charged VAs

3+ defect in GaAs �see below� which also exhibits
large lattice relaxations,139 we find convergence of the elastic
energy within 0.06 eV for 128-atom and larger supercells.
Therefore, we focus here on the slower-converging size-
dependent effects that in general cannot be converged by
simply calculating large enough cells. These slow-
converging finite-size effects are, in particular, the electro-
static image charge interaction in the case of charged defects
�Sec. IV A� and the Moss-Burstein-type band-filling effects
in the case of occupied shallow levels that are caused, e.g.,
by charge-neutral shallow donors �Sec. IV B�.

A. Image charge interactions

The treatment of charged supercells and the question of
whether or not the image charge corrections proposed by
Makov and Payne31 are appropriate have been subjects
of considerable discussion and debate in
literature.5,9,39,40,44–57 In particular, concerns were
raised44,48,57 that the “defect charge,” i.e., the charge differ-
ence between the “host+defect” and “pure-host” systems,
may be too delocalized, so that the point-charge model un-
derlying the �first-order� image charge correction in Ref. 31
may not hold. Therefore, we assess here the validity of the
image charge correction �Eq. �11��



centered-cubic �bcc� supercells �see Ref. 140 for the justifi-
cation of combining the different cell symmetries in the
finite-size scaling�.

Figure 7 shows the size dependence of �H of VAs
3+ as a

function of the inverse linear supercell dimension 1 /L for
three different levels of corrections, along with a respective
fit according to Eq. �22� �the fit includes all supercells with
64 or more atoms�: �1� �diamonds� uncorrected supercell en-
ergies, with fit of �1, �3, and �H���; �2� �squares� supercell
energies after the potential-alignment correction �Eq. �7��,
with fit of �1 and �H���; and �3� �circles� supercell energies
after potential-alignment and image charge corrections �Eqs.
�7� and �11��,141 with fit of �H��� only �i.e., �H��� is the
average �H for the cell sizes between 64 and 1728 atoms�.
Comparing the three different finite-size scaling data sets, we
see that very similar extrapolations to infinite cell size are
obtained; i.e., the values of �H��� obtained by the three fits
agree within 0.04 eV. It is notable that even the result of the
32-atom cell �bcc� is rather well converged within only 0.06
eV, whereas the supercells in fcc symmetries �e.g., 16, 54,
and 128 atoms�



atom cells. Large errors occur also if potential-alignment
effects are considered but no image charge corrections are
applied, as done, e.g., in the recent ZnO defect calculations
by Janotti and van de Walle.40 In the examples shown in
Table II, such potential-alignment-only corrected energies for
the typical cell size of 64 atoms deviate from the converged,
i.e., the fully corrected energies by up to 0.9 eV, highlighting
the importance of taking into account image-charge and
potential-alignment corrections simultaneously.

2. Unexpected scaling of the image-charge correction

A surprising observation in Fig. 7 is that the data set in-
cluding only the potential-alignment corrections �squares�
but not the image-charge correction can be well fitted with
only the first-order parameter �1, i.e., with the setting �3=0.
This means that after the potential alignment �which scales
as 1 /L3�, no significant third-order contribution remains, de-
spite the nominal 1 /L3 scaling of the second term in Eq. �11�,
and that the image-charge correction effectively scales as
1 /L. Indeed, when we plot for the case of VAs

3+ the third-order
correction �EMP

3 �second term in Eq. �11�� as a function of
the respective first correction �EMP

1 �first term in Eq. �11��,
we find a clear proportionality, shown in Fig. 8,

�EMP
3 = f�EMP

1 , �23�

which strongly deviates from the behavior that would be
expected from the nominal 1 /L3 scaling of the third-order
term �EMP

3 , as illustrated by the dashed line in Fig. 8. Addi-
tionally, from calculation of defects with different charge
states in GaAs �Table II� we find that the proportionality
factor f =−0.35 is essentially independent of q. Thus, �EMP

3

scales effectively in the same way as �EMP
1 , i.e., as q2 /L,

which indicates the implicit dependency Qr�qL2 for the
second moment of the defect density 
̃D�r� �cf. Eqs. �11� and
�12��. Notice that the effective 1 /L scaling of �EMP

3 implies

that a significant error can be introduced in the scaling
method of Erhart et al.,39 where it is assumed that after ap-
plying the first order correction �EMP

1 , the remaining finite-
size dependence scales solely as 1 /L3.

In order to study the origin of the dependency Qr�qL2

and, hence, of the unexpected scaling behavior of the third-
order term �EMP

3 , we calculated the �all-electron� defect-
induced electron-density difference 
̃D�r� �cf. Sec. II D 6�
due to the ionized SeAs

+ donor in a 1000-atom supercell of
GaAs. Thus, Fig. 9�a� shows the defect-induced charge den-
sity −
̃D, which is the negative of the electron-density differ-
ence



the �background-compensated� point charge with the delocal-
ized part of the defect charge,31 the following physical pic-
ture emerges for the unexpected proportionality between
�EMP

3 and �EMP
1 : The delocalized part of the defect density


̃D�r� arises due to the dielectric screening response of the
host upon introduction of a defect with charge q. This delo-
calized defect density is proportional to q and is essentially
constant in the regions farther away from the defect, i.e.,
those regions that primarily contribute to the second radial
moment Qr of the defect charge. Thus, by the definition of Qr
�Eq. �12�� it follows the proportionality Qr�qL2, which ex-
plains the observed 1 /L scaling of �EMP

3 . Since, �EMP
3 is

determined by the screening response of the host, rather than
by any defect-specific property, the proportionality factor f in
Eq. �23� should be independent of the specific defect, so that
Eq. �11

�
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occupied donor state; see also Sec. III F�, we see in Fig. 10
that at small cell sizes the band-filling and shallow-donor
corrections partly cancel each other. As a result, the uncor-
rected formation energy is closer to the corrected �H at
small cell sizes than at large cell sizes. This cancellation
effect is exploited in a method to calculate formation ener-
gies and transition levels by determining the band-edge en-
ergies of the host as the �supercell� Brillouin-zone average
instead as the band energy at the extremal points �e.g., ��,9,94

while no band-filling corrections are applied to the defect
state. Of course, correcting band-gap errors and band-filling
effects separately yields more accurate energies and does not
depend on the actual supercell size used.

Notably, a slight increase in the formation energy with
cell size is still observed in Fig. 10 after application of the
band-filling and shallow-donor corrections. This increase can
be explained by a residual image charge interaction, consid-
ering that an ionic +1 quasipoint charge is created by replac-
ing the As+5 ionic core with a Te+6 ionic core, which is
compensated by the donor electron in a shallow, delocalized
state �PHS�. Since the shallow-donor states overlap with
their periodic images, even the formally charge-neutral TeAs

0

donor can be regarded as a �screened� point charge in a com-
pensating background. Since, however, the compensation
charge, i.e., the electron in the shallow-donor state, is not
strictly homogeneous as the compensation jellium back-
ground in the case of the ionized TeAs

+ donor, the effect is
smaller, i.e., only �40% of the magnitude expected by the
respective correction �EMP for TeAs

+ according to Eq. �11�.
The strong supercell-size dependence of the uncorrected

�H of the shallow TeAs
0 donor in GaAs is in stark contrast

with the behavior of the deep VO
0 donor in ZnO, in which

case the formation energy is practically independent of the
size of the supercell �see Fig. 5� and there is no need for
correction of size effects. Due to the deep and localized do-
nor state of VO �cf. Fig. 6, center�, the electrons occupy the
DLS, i.e., the primary defect state, and not the host-band-
derived PHS �cf. Sec. III F�. Accordingly, no finite-size ef-
fects associated with band filling in the strongly dispersive
host conduction band occur. Thus, the independence of
�H�VO

0 � from the cell size corroborates our argument �see
Sec. III E 1� that the donor state of VO

0 does not have the
character of the host conduction band and should not expe-
rience a shift with the CBM during band-gap correction.
Since the deep level of VO

0 is formed below the CBM of LDA
or GGA, the band-filling correction, as formulated in Eq. �6�,
automatically vanishes despite the large dispersion of the im-
purity band within the LDA or GGA band gap, thereby cor-
rectly reflecting the size independence of �H�VO

0 �. Thus, we
agree with the conclusion by Castleton et al.54 that the dis-
persion correction is not appropriate for deep defects.

A more difficult situation arises if a deep-donor level oc-
curs below the experimental CBM energy but above the
CBM in the LDA calculation �type-III behavior; see Sec.
III F and Fig. 6�. In this case, the simultaneous application of
the band-filling and shallow-donor corrections would incor-
rectly predict a shallow level after correction. On the other
hand, in the limit of large supercells, the introduced donor
electron would relax to the energy of the LDA-calculated
CBM which is lower than the appropriate defect level energy

�Fig. 6, right�. Thus, type-III behavior can lead to the unsus-
pected situation that the uncorrected energies are more accu-
rate for small cell sizes than for large sizes �cf. Sec. III F�
because the band-filling effect causes the �correct� occupa-
tion of the defect level inside the LDA conduction band.
Such convolutions of band-gap errors due to LDA and finite-
size errors may be the origin of the conclusion obtained in
Ref. 54 that the appropriate band-gap correction method de-
pends on the supercell size used in the respective calculation,
whereas, in principle, band-gap and finite-size errors are of
fundamentally different origins. In order to avoid the convo-
lution between both types of errors, it can be very useful to
correct the band edges within the self-consistent calculation
through additional potentials,123 which, at the same time, re-
moves the spurious hybridization between the defect state
and the host-band states, and enables the calculation of tran-
sition levels inside the corrected band gap.

2. Convergence of single-particle energies

Regarding the convergence of single-particle defect
states, we find pronounced finite-size effects for the a1 gap

level of VO
0 �Fig. 4� if it is determined at �̄, i.e., the center of

the Brillouin zone corresponding to the supercell; see

“a1��̄�” in Fig. 5. A similar observation was recently made
by Li and Wei,145 who calculated the �single-particle� gap
level of the isovalent OTe defect in ZnTe, and found slow



energy DLS and the lower-energy PHS reduces the energy of

the a1���̄� state, i.e., of the CBM-derived PHS, which occurs

below the CBM at the zone center �̄. However, the Brillouin-
zone average of the dispersive PHS a1� remains above the
CBM for typical cell sizes, as observed, e.g., in the gap-
corrected defect-bandstructure for VO

2+ in Ref. 43. �Note that
the Brillouin-zone average of a PHS is size dependent,
whereas that of a DLS is essentially size independent, be-
cause the number of available host states increases with the
cell size, whereas that of the defect states does not.� With
increasing supercell size, the PHS a1� of VO

2+ converges to-
ward the host-conduction-band-like shallow effective-mass
level just below the CBM.



VI. SUMMARY AND CONCLUSIONS

A. Band-gap correction

By calculating the quasiparticle band gap from total-
energy differences, we demonstrated that the well-known
band-gap problem is a real deficiency of the approximate
LDA and GGA functionals, not just a fallacy caused by the
nonphysical meaning of the Kohn-Sham single-particle ener-
gies. Given that accurate self-consistently band-gap-
corrected total-energy calculations for large-scale defect sys-
tems remain challenging, we assessed current schemes for ex
post facto band-gap corrections for the conventional LDA
and GGA functionals. We demonstrated that extrapolation
schemes, in which a band-gap-opening perturbation is ex-
trapolated toward the experimental gap, depend in general
very sensitively on the type of perturbation applied. Thus,
such methods are arbitrary as to the choice of the perturba-
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