Excitons and excitonic fine structures in Si nanowires: Prediction of an electronic state crossover with diameter changes

Si nano ires ha e attracted considerable attention as promising candidates for electronic, thermoelectric, photonic, and photo oltaic de ices, et there appears to be onl limited inderstanding of the inderling electronic and e citonic str ct res on all pertinent energ scales. Using atomistic pse dopotential calc lations of singleparticle as ell as man -bod states, e ha e identi ed remarkable properties of Si nano ires in three energ scales: (i) In the high-energ - 1-eV scale, e nd an n s al electronic state crosso er hereb the nat re of the lo est nocc pied molec lar orbital (LUMO) state changes its s mmetr ith ire diameters for [001]oriented ires b t not for [011]-oriented ires. This change leads to orbitall allo ed transitions becoming orbitall forbidden belo a certain critical diameter for [001] ires. (ii) In the intermediate-energ - 10⁻¹-eV scale, e describe the d e to the electron-hole e change interaction, hereas the spin-allo ed states in the orbitall forbidden diameter region remain dark. The diameter dependence of the ne-str ct re splitting of e citonic states scales as 1/D

in [001] ires and as $1/D^{2.6}$ in [011] ires. S rface-polarization effects are fond to significant enhance electron-hole Co lomb interaction, b t ha e a small effect on the e change ne-str ct re splitting. The present ork pro ides a road map for a ariet of electronic and optical effects in Si nano ires that can g ide spectroscopic st dies.

DOI: 10.1103/Ph sRe B.84.075404 PACS n mber(s): 78.67.Lt, 73.21.Hb, 71.35.Cc, 78.20.Bh

I. INTRODUCTION

Si nano ires ha e attracted considerable interest as promising candidate str ct res for electronic, 1,2 thermoelectric, 3,4 photonic, 5,6 and photo oltaic de ices, 7 11 re ected b 1 mero s papers on gro th, ¹² ¹⁴ str ct ral characterization, ¹⁵ transport, ^{16,17} and optical ^{15,18} ²³ properties. Yet, there appears to be limited nderstanding of the nderl ing electronic and e citonic properties. S ch nderstanding o ld span three energ scales: (i) in the high-energ 1-eV scale one needs to nderstand the nat re of con ned energ le els and their dependence on ire orientation and diameter (single-particle

here $\mathbf{M} = \sum_{h_i,e_j} C^{(\)}(h_i,e_j) \quad _{h_i} |\widehat{\mathbf{P}}| \quad _{e_j}$ is the dipole transition matri , E is the e citon energ and the broadening of spectral lines, is chosen as 50 μ eV. The e citon deca lifetime () is calc lated according to 39

$$\frac{1}{m_0^2 h c^2} = \frac{4 E n |M|^2}{m_0^2 h c^2},$$
 (7)

here n is the refractive inde (4.0 for photon

TABLE I. Direct prod ct of interband dipole matri elements $h|\mathbf{P}_i|e$ in Si [001] ires (D_{2d} s mmetr) and [011] ires (C_{2v} s mmetr). \mathbf{P}_i represents the dipole operator along the ire a is (P_{001} for [001] ires and P_{011} for [011] ires) and in-plane direction (P_{110} for [001] and P_{100} for [011]). The s mmetric A_1 representation (dipole-allo ed transition) is gi en in bold. For [001] ires the LUMO A_1 is allo ed in P_{001} and E is allo ed in P_{110} . For [011] ires A_1 is allo ed in P_{011} .

[001]:	$h P_{001}(B_2) e$	$h P_{110}(E) e$		
	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
[011]:	$h P_{011}(B_1) e \ B_1 B_1 A_1 = \mathbf{A_1}$	$h P_{100}(A_1) e$ $B_1 A_1 A_1 = B_1$		

corresponds to the electrostatic potential e cl ding the s rfacepolarization effect, and is the sol tion of the Poisson eq ation,

(**r**)
2
 $_{e_{j},e_{j}}^{\text{dir}}(\mathbf{r}) = -4$ $e^{2}\sum_{e_{j}}(\mathbf{r},)$ $_{e_{j}}(\mathbf{r},)$. (11)

Eq ations (10) and (11) are sol ed in real space b sing a nite-difference discretization of the gradient operator and a conj gate-gradient minimization algorithm. 42,43

In the follo ing e rst present res lts for [001] ires from the abo e (i), (ii), and (iii) energ scales, and then sho res lts for [011] ires. We then disc ss the effects of dielectric mismatch on e citon binding and e change interaction.

A. The eV energy scale: Single-particle states

B lk Si has si eq i alent cond ction-band alle s X(along the -X direction), from hich the LUMO of ires is deri ed. The con nement plane of [001] ires contains fo r of X alle s, folded to the point of the ire Brillo in zone. For [001] ires belonging to the D_{2d} point gro p, s mmetr anal sis^{44} indicates that these for χ -deri ed states correspond to the A_1 , B_1 , and E representation, here both A_1 and B_1 are nondegenerate and E is do bl degenerate. The highest occ pied molec lar orbital (HOMO) al a s has nondegenerate B_2 s mmetr for all ire sizes. Fig res 1(a)and 2 sho e ol tion of the LUMO and HOMO state hen the ire diameter is aried. At large diameter D = 7.6 nm, as q ant m con nement and inter alle co pling are negligible, the splitting bet een A_1 , B_1 , and E is tin, lea ing all these states practicall degenerate. With decreasing diameters, the enhanced inter alle co pling lifts the degenerac of these fo r states. This makes the B_1 state the lo est-energ one at diameter D = 3.3 nm to D = 2.5 nm (see Fig. 2). For lo er diameters, the A_1 state becomes the LUMO [e.g., D = 2.2 nm in Fig. 1(a)]. In contrast to the LUMO, the HOMO keeps the B_2 s mmetr for all the diameters. These HOMO and LUMO states ha e characteristic a ef nctions corresponding to their speci c s mmetries, as sho n in the right part of Fig. 1.

The s itching of s mmetr of the LUMO state ith diameter has a strong effect on the optical properties of these ires. Table I sho s the direct prod ct $h|\mathbf{P}_i|e$ for electron-hole dipole transition matri elements, in terms of the irred cible

representations of the D_{2d} gro p ($|e| = A_1$; B_1 ; E and $|h| = B_2$). The dipole operator \mathbf{P}_i consists of t o components: P_{001}

TABLE II. S mmetr anal sis of the e citonic states generated from HOMO and LUMO single-particle orbitals of [001] and [011] Si ires. Single-gro p representations are con erted to corresponding do ble-gro p representations to incl de the spin degree of freedom for e citons.

	НОМО	LUMO	E citons (HOMO LUMO)
[001]:			
D = 7.6 nm	B_2 – $_6$	E - $_6$ + $_6$	$_{6}$ $_{6}=A_{1}$ A_{2} E
D = 3.3 nm	B_2 – $_6$	B_1 – $_6$	$_{6}$ $_{6}=A_{1}$ A_{2} E
D = 2.2 nm [011]:	B_2 – $_6$	A_1 – $_7$	$_{6}$ $_{7}=B_{1}$ B_{2} E
D = 3.3 nm	B_1 – 5	A_1 – 5	$_{5} \qquad _{5}=A_{1} A_{2} B_{1} B_{2}$

B. Intermediate energy scale: Exitonic states

Based on the gro p theor Table II describes ho single-particle HOMO and LUMO states contrib te to prod ce e citons. Here e con ert single-gro p representations to corresponding do ble-gro p ones adding the spin degrees of freedom. It can be seen that three gro ps of e citonic states emerge from different s mmetr of the LUMO state:

(1) At diameter D = 7.6 nm [Fig. 3(a)], the spin-orbit

TABLE III. Calc lated gro nd-state e citon energ E(i) and e citon ne-str ct re splittings for [001] ires (Fig. 3) and [011] ires (Fig. 6). E(i) (i=1, 2, 3, and 4) represent the energ of e citonic transition corresponding to the notation (1, 2, 3, and 4) in Figs. 3 and 6.

		[001]:		[011]:
$D\left(\mathrm{nm}\right)$	7.6	3.3	2.2	3.3
<i>E</i> (1) (eV)	1.182	1.460	1.764	1.335
E(2)- $E(1)$ (µeV)	21.3	238.9	399.4	3.4
E(3)-E(2) (µeV)	25.1	721.3	2668.6	20.8
$E(4)$ - $E(3) (\mu eV)$	92.4			1017.6

SO co pling), there is strong con g ration mi ing bet een these t o $_{6}$

FIG. 8. (Color online) The s rface-polarization-ind ced self-energ , $_{i}^{\text{pol}}$ [i=e1 (LUMO) and h1 (HOMO)], Co lomb interaction $-J_{e1,h1}^{\text{pol}}$ (negati e al e means decreasing e citon energies), and the s m $_{e1}^{\text{pol}}$ + $_{h1}^{\text{pol}}$ - $J_{e1,h1}^{\text{pol}}$ are sho n as a f nction of $_{o}$ t for a [001] ire of diameter D=3.3 nm. The direct Co lomb interaction (e cl ding s rface-polarization effect) $J_{e1,h1}^{\text{dir}}$ is sho n as a solid (horizontal) line for comparison.

sing $_{\rm in}=11.85$ (Ref. 40) for the Si $_{\rm ot}=1.5$ for the s rro nding material. The calc lations are performed for the [001] ire ith diameter D=3.3 nm. Fig re 72oe2R()Tj/F51Tf1.0580TD(e)Tj/F11Tf.46370TD[(1)-163.5(())]T