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We show that the previously predicted “cubic Dirac fermion,” composed of six conventional Weyl
fermions including three with left-handed and three with right-handed chirality, is realized in a specific,
stable solid state system that has been made years ago, but was not appreciated as a “cubically dispersed
Dirac semimetal” (CDSM). We identify the crystal symmetry constraints and find the space group P63=m
as one of the two that can support a CDSM, of which the characteristic band crossing has linear dispersion
along the principle axis but cubic dispersion in the plane perpendicular to it. We then conduct a material
search using density functional theory, identifying a group of quasi-one-dimensional molybdenum
monochalcogenide compounds AIðMoXVIÞ3 (AI ¼ Na, K, Rb, In, Tl; XVI ¼ S, Se, Te) as ideal CDSM
candidates. Studying the stability of the AðMoXÞ3 family reveals a few candidates such as RbðMoTeÞ3 and
TlðMoTeÞ3 that are predicted to be resilient to Peierls distortion, thus retaining the metallic character.
Furthermore, the combination of one dimensionality and metallic nature in this family provides a platform
for unusual optical signature—polarization-dependent metallic vs insulating response.
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I. INTRODUCTION

The crossing on energy bands in complex materials
showing dense manifold of states is a ubiquitous effect
routinely reported in the past ∼
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HðkÞ ¼
 

a1ðkÞσz þ a2ðkÞσy þ a5ðkÞσx ða3ðkÞ − ia4ðkÞÞσz

ða3ð



G9 þ G10 bands, and thus, they have fp; qg ¼ f2; 0g,



short-long-short-long bonding with each other. Intere-
stingly, the three Se atoms within the same plane of each
Mo triangle tend to move oppositely and thus form a
buckled in-plane structure. We applied such a distortion
mode to the undistorted structure, and after relaxation, we
found that such Peierls distortion indeed eliminates the
negative phonon modes [see Fig. 4(c)] as well as lowers the



and TlðMoSeÞ3 and InðMoSeÞ Þ



linear-dispersing direction, the quadratic and cubic-
dispersing directions have enhanced density of states near
the band-crossing point, which results in stronger screening.
Specifically, in CDSM (n ¼ 3), the Coulomb interactions
along the in-plane directions are screened with a faster decay
than that along the rotation axis (r−1). Recently, it was
predicted that WSM with n ¼ 3, in the presence of short-
range interactions, can easily undergo a continuous quantum
phase transition into either a translational symmetry-breaking
axion insulator or a rotational symmetry-breaking nematic
state [60]. Furthermore, the nonlinear dispersion and the 1D
nature of a condensed-matter system would cause a break-
down of the interacting Fermi liquid theory for electron
behavior, leading to Luttinger liquid instead.
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APPENDIX A: CLASSIFICATION OF DIFFERENT
TYPES OF FERMIONS IN SOLID-STATE

PHYSICS

Table II shows examples of materials that host different
types of fermions classified by the degree of degeneracy (g)
and the highest power of band dispersion (n). Here, we
consider three-dimensional crystals with spin-orbit cou-
pling, respecting time-reversal symmetry. We consider
single-point degeneracy in k space, so the materials with
line nodes are not included. Some cases, e.g., g ¼ 8 and
n ¼ 3, are forbidden because of the restriction of crystal
symmetries. Some cases are predicted to exist, but there is
no material realization yet (marked by “?” in the table). The
materials with asterisks have hypothetical configurations,
while the rest of the examples (including our work) have
been synthesized as single crystals.







that all the quasi-1D compounds have strong dispersions
along the c axis and flat in-plane dispersions.
Comparatively, the compounds with heavier A and X
elements tend to have stronger in-plane dispersions because
of the relativistic effects.

APPENDIX C: SPACE GROUPS THAT
HOST CUBIC DIRAC FERMIONS

Here, we use symmetry analysis to show how non-
symmorphic symmetry ensures fourfold degeneracy, i.e.,
the Dirac point, at certain time-reversal invariant (TRI) k
points in a spin-orbit system preserving both inversion
symmetry P and time-reversal symmetry T. Then, we show
that out of 230 space groups, only P63=m (No. 176) and
P6=mcc (No. 192) have appropriate symmetries to host
cubic Dirac fermions.

In a spin-orbit system, the anti-unitary operator T
behaves as T2 ¼ −1, leading to Kramers degeneracy.
Together with inversion symmetry, it turns out that all
the energy bands are twofold degenerate with the two
components related to each other by PT, i.e., ψðk; σÞ and
PTψðk; σÞ ¼ ψðk;−σÞ, which is known as spin degen-
eracy. Therefore, to achieve fourfold degeneracy, we need
an extra pair of states Lψ and PTLψ with ½L; H� ¼ 0 that
differ with ψ and PTψ , while L is a Hermitian symmetry
operator of the system. We are thus looking for another
Hermitian symmetry operator A to fulfill the condition
fA; APTg ∩ fAL; ALPTg ¼ ∅, where A is the eigenvalue of
ψ under A. Thus, we get two pairs of bands fψ ; PTψg and
fLψ ; PTLψg that have different eigenvalues of A, so they
must have a band crossing rather than a gap opening. The
task is basically to find the two operators L and A, and the
degeneracy will happen at the k points that are invariant
under these two symmetry operations. For example, if the k
points that are invariant under both L and A form a line, the
system is thus a nodal-line semimetal.

Without adding new symmetries, we first let L ¼ P.
Since the P operator reverses the momentum, there are only
eight TRI k points in the BZ that are P invariant. Now, we
are looking for the operator A that fulfills

fA; APTg ∩ fAP; ATg ¼ ∅: ðC1Þ

We next consider the most common twofold symmetries for
A that all the TRI k points can preserve, which have two
eigenvalues. From Eq. (C1), we have A ¼ −AP, indicating

APψ ¼ APPψ ¼ −PAψ ¼ −PAψ ; ðC2Þ

which leads to the anticommutation relationship

fA; Pg ¼ 0: ðC3Þ

Given that P commutes with any point-group operations,
we conclude that A contains a nonsymmorphic symmetry

that is a combination of point-group operation and frac-
tional translation. In addition, from Eq. (1), there is another
condition A ¼ −AT . Considering ½A; T� ¼ 0, we have

ATψ ¼ TAψ ¼ TAψ ¼ −TATψ ¼ ATTψ ; ðC4Þ

which indicates AT ¼ �i and thus

A2 ¼ −1: ðC5Þ

Therefore, the symmetry operation A that fulfills
Eqs. (C3) and (C5) ensures a DP in certain TRI k points.

Combining three symmetry filters for cubic Dirac semi-
metal (i.e., inversion, C6, and nonsymmorphic symmetry),
only four possibilities [P63=m (No. 176), P6=mcc (No. 192),
P63=mcm (No. 193), and P63=mmc (No. 194)] are left. All
of these space groups have DPs at the four TRI k points (one
A point and three L points) within the kz ¼ π plane. For
space groups No. 176, No. 193, and No. 194, there is an axis
symmetry fC2jð0; 0; 1=2Þg, which transforms (x, y, z) in
position space to (−x, −y, z þ 1=2). Considering the
combination symmetry A ¼ PfC2jð0; 0; 1=2Þg, it is easy
to test that ½A; P� ¼ 0 in the kz ¼ 0 plane and fA; Pg ¼ 0 in
the kz ¼ π plane. On the other hand, A2 preserves (x, y, z)
while it rotates spin by 2π, leading to a minus sign,A2 ¼ −1.
Therefore, A protects the fourfold degeneracy at the four
TRI k points within the kz ¼ π plane. However, space
groups No. 193 and No. 194 have three mirror planes
parallel to the C6 axis, posing extra symmetry conditions that
force three high-symmetry lines to be degenerate. Here, we
still take A ¼ PfC2jð0; 0; 1=2Þg but L ¼ Mx, which trans-
forms (x, y, z) in position space to (−x, y, z). The
commutation relationship then reads fA; Mxg ¼ 0 and
½A; PTMx� ¼ 0 in the kz ¼ π plane. In this case, A and L
keep the whole kx ¼ 0 line, as well as another two lines
related by C3 symmetry in the kz ¼ π plane, rendering the
system a nodal-line or nodal-ring semimetal.

On the other hand, space group P6=mcc (No. 192) has
six glide reflection planes that all contain the C6 axis, and
here we take fMxjð0; 0; 1=2Þg, which transforms (x, y, z) to
(−x, y, z þ 1=2). Similarly, considering the combination
symmetry A ¼ PfMxjð0; 0; 1=2Þg, we also have fA; Pg ¼
0 in the kz ¼ π plane and A2 ¼ −1, which protects only
four DPs and no extra symmetries for more degenerate k
points. Finally, we reach the conclusion that out of 230
space groups, only P63=m (No. 176) and P6=mcc (No. 192)
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