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actually synthesized and proven to be topological. We note that
the predicted topoloids were obtained by using just the upper
part of the general flow in Scheme 1 denoted as “partial screen-
ing flow”. The latter screening has been often based on the
assumption that the crystal will take up the highest symmetry
possible, not considering the possibility of energy-lowering sym-
metry breaking that obviates topological properties. Unfortu-
nately, both experimental and theoretical databases of
structures and properties of compounds sometimes omit infor-
mation on magnetism, spontaneous defect formation, or how
would the structure change when significant doping is required.
Furthermore, in the case of polymorphous networks [26] (structures
having a distribution of different local motifs), experimental X-ray
structure determination often approximates the structure by an
artificial, high symmetry primitive unit cell describing the
macroscopic average configuration. Such “virtual structures”
should not be used as input to electronic structure calculations
[26]
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(energy lowering) formation of Bi vacancies that condense
into ordered vacancy compounds whose low local symme-
try defeats the specific degeneracy promoting topology.

(iii) Symmetry lowering by magnetism (spin-polarization) removes
the topology-promoting band degeneracy: This is illustrated
for the predicted 8-fold band degeneracy of metallic
CuBi2O4 [17] in assumed nonmagnetic configuration.
Once magnetic spin-polarization is allowed, the total
energy decreases, and the band degeneracy disappears.

(iv) The predicted topological property requires doping that inher-
ently destabilizes the topological structure: This is illustrated
for BaBiO3 [18] that requires an upshift of the Fermi
energy by �2 eV to meet the inverting energy bands. This
occupation of massively antibonding states leads to a
destabilizing increase in total energy relieved by structural
transformations that defeat topology.

(v) The topological property is caused by artificial band inversion
due to systematic density functional theory (DFT) errors: The
method used to assess the band structure—DFT—requires
an exchange–correlation energy functional. But current
approximated functionals suffer from the self-interaction
error that lowers the unoccupied bands and raises the
occupied bands, causing, at the extreme, unphysical band
inversion. This occurs in InN and InAs [10–13], well
known normal insulators predicted by DFT with current
functionals to be topological metals.

Avalible materials databases (e.g., ICSD [31]) contains hun-
dreds of thousands entries. These are first pragmatically nar-
rowed down by theorists [10–13] using filters such as avoid
duplications, limit the maximum cell size to be examined,
exclude theoretically difficult to calculate atoms (d or f elec-
trons), exclude alloys and other structures with fractional occu-
pation numbers, etc. After this narrowing down, the band
structures of the remaining compounds are computed by density
functional. For instance, Vergniory et al. [10] calculated 26,938
compounds from which 181 (34) were found to be topological
insulators with DFT gap between occupied and unoccupied states
of at least 0.001 (0.1) eV. The Swiss TOPOMAT database [13] uses
different filters to narrow down the entries ending up with
13,628 directly inspected cases and found 50 (17) topological
insulators with DFT band gaps of >0.001 (0.1) eV. We note, how-
ever, that the number of compounds and the numerical results
in these online databases are regularly changed by the authors.

We have studied only a few compounds from the published
lists of predicted topological insulators with finite band gaps.
These already illustrate possible failure modalities that can be
detected by using simple, additional “search filters” from the
same density functional theory used to establish the requisite tar-
get band structure. The current list of predicted topological insu-
lators with real band gaps might then be a diminishing domain.
The approach
Identifying actual realizations of topological compounds requires
theories with a full atomic resolution that recognize site and
space symmetries in crystals. The recent rebirth of density func-
tional band theory of solids (and higher-order theories that use
DFT to initialize the problem, such as DFT-DMFT [32], DFT-GW
[33,34], DFT-QMC [35]) as a tool for uncovering topological
behavior hidden in the spaghetti-like energy band structure, lies
in DFT’s ability to directly decode the consequences of an
assumed ACS on the band structures. This affords a direct map-
ping of the theory onto the Periodic Table via explicit incorpora-
tion of the electron–ion potential Vext ¼
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What about metastable compounds:
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manipulatable chemical potentials of elements – can be used to
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has such a significant energy lowering potential that it might
very likely defeat the intended metallic state of the predicted
new Fermion.
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dominated by anion p states, while cation s orbitals define the
conduction band. Indeed, the existing experimental literature
on the InN and InAs phases does not reveal any topological prop-
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