False metals, real insulators, and degenerate gapped metals

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ &$

B. Local spin motifs: allowing for a polymorphous spin network can convert a false metal to a real	0
C Local structural motifs: anabling anargy lowaring	9
bond disproportionation can convert a false	
metal into a real insulator	g
D Local structural motifs: enabling energy lowering	0
pseudo-Jahn–Teller-like distortions can convert a	
false metal into a real insulator	11
E. Local structural motifs: allowing for spontaneous	
defect formation can convert a false metal into a	
real insulator	14
F. Spin-orbital motifs: spin-orbit coupling in high-Z	
compounds can convert false metals to insulators.	16
IV. SYMMETRY BREAKING IN DEGENERATE	
GAPPED METALS LEADING TO LOCALIZED	
TRAPPED CARRIER STATES	16
V. WHEN DEGENERATE GAPPED METALS STAY	

"acceptor state" inside the principal band gap if its formation costs a "reconstruction (rec) energy" $|E_{\text{rec}}|$ that is smaller than the energy gained by transferring q electrons from the conduction band to these lower energy acceptor states $|q\Delta E|$, where ΔE is the band energy difference for electrons in the conduction/valence band and localized states. In general, spontaneously formed acceptor states may be $c = c^{-1}$

 $dzfzc_{1}$ (e.g., cation vacancies) as in BaNbO₃, Ca₆Al₇O₁₆, and Ag₃Al₂₂O₃₄ and lead to (i) the observed off-stoichiometry even at low temperatures,^{23,28–31} (ii) reduced metallicity and, at the extreme, even to (iii) the emptying of the conduction band and thus a metal to insulator transition. But such acceptor states may also be $z \neq c_{1} = c dzfzc_{2}$,

While recently developed open access databases^{20,43–45} of elec-

standard tight binding, 47 k·p, 48,49

It turns out that each of these symmetry-breaking modalities can result in energy lowering, leading to local symmetry breaking. The electronic structure can react to the existence of such distributions,

XC density-functional (i.e., SCAN) without an on-site interelectronic repulsion, i.e., = 0 eV. CuBi_2O_4 is also a wide band gap magnetic insulator, which recently attracted significant attention for catalysis,⁹⁷ thus suggesting that eight-band fermions near the Fermi level found in hypothetically nonmagnetic CuBi_2O_4 are not likely to be realized.

B. Local spin motifs: Allowing for a polymorphous spin network can convert a false metal to a real paramagnetic insulator

Paramagnetic (PM) compounds have non-zero local but zero total magnetic moments. Until recently, the properties of such systems have been explored as properties of globally average nonmagnetic structures [Fig. 7(a)], $^{14,92,98-101}$ leading invariably to metallic prediction in contrast with the known insulating properties of many if not most PM ABO₃ phases. Because of this, there has been a long-term belief that many properties of PM systems cannot be described within DFT methodology, and higher-order methods [e.g., dynamical mean-field theory (DMFT)

SrBiO₃ as a topological compound, but this structure is not the stable phase. $f d_{ff} ff^{2} = \frac{c}{4} \frac{e^{2}}{4} \frac{e^{$

* DÈ

. . **____**The No. of Courts ulla. NAMES AND ADDRESS and the second nana <mark>ili dang </mark>aras an alle be an nin a Harn all FIG. 9. A S T 2 (S 12) LSE 5 S (LSE), () () F (D E) () () () LSE 16 + . + * * **** ٤ . .() PBE+ S G L ₩ 3.(S 221) ŝŤ 14 * * * * * () S 🖡 τ. -¢ \$ È (ř) Č] 4 - 44 -**5** 3 (*I*S 14) 16 t t \$ T₂(S 12) DE. 1 t) 0.261€. S € € 114 () PBE+1 S C

ŝ

÷ě

1.

÷

€ т 🏅 e et (

†'

conflict with available experimental data showing that the compound is an AFM insulator with a wide band gap at low temperature. 129

conductors [Fig. 11(c)], the formation of donor vacancy results in the moving electrons from the donor level to the hole states in the valence band, which can restore the part of the energy needed to form the vacancy. Similarly, for n-type degenerate gapped metal [Fig. 11(d)], the formation of acceptor vacancy can result in decay of conducting electrons to the acceptor level restoring part of the energy needed to create the vacancy. Such electron–hole recombination can result in spontaneous vacancy formation, which can induce significant deviation from stoichiometry at low-temperatures.^{23,31,139,140} To examine the possibility of the instability of stoichiometric Ba₄As₃ and Ag₃Al₂₂O₃₄, we study the formation of As vacancy (donor) in the Ba₄As₃ and Ag vacancy (acceptor) in Ag₃Al₂₂O₃₄. Taking into account all experimentally known stoichiometric phases in Ba–As and Ag–Al–O phases, the range of chemical potentials for stability

of Ba_4As_3 and Ag_3Al_{22}

results suggest that both compounds are unstable with respect to

(see below TiO₂:Li) behaving as a defect level, except that the defect here is $\neq qc_{-}$ c. This situation is common when the localizing sublattice atom can exist in more than one FOS, such as Ti³⁺ and Ti⁴⁺. In the dilute defect limit, this latter situation is often discussed as polaron—a quasiparticle originating from the interactions of electrons/holes with a lattice ion, often causing local distortions.^{148,149}

formation of h-trapped states in Figs. 6(e), 8(b), and 9(f). Here, $\rm YNiO_3$ and $\rm SrBiO_3$ are the compounds having disproportionation in the low-

(i)

correlated systems: Dynamical mean-field theory," J. Phys.: Condens. Matter 9, 7359 (1997). ¹⁰⁵T. Yoshida, A. Ino, T. Mizokawa, A. Fujimori, Y. Taguchi, T. Katsufuji, and Y.

- ¹⁴⁹T. Holstein, "Studies of polaron motion: Part I. The molecular-crystal model," Ann. Phys. 8, 325 (1959).
 ¹⁵⁰A. R. Elmaslmane, M. B. Watkins, and K. P. McKenna, "First-principles modeling of polaron formation in TiO₂ polymorphs," J. Chem. Theory Comput. 14, 3740 (2018).
 ¹⁵¹A. C. M. Bedilke, H. Paekirger, A. P. Pocha, and C. M. Dalnian, "Charge storp.
- ¹⁵¹A. C. M. Padilha, H. Raebiger, A. R. Rocha, and G. M. Dalpian, "Charge stor-age in oxygen deficient phases of TiO₂: Defect Physics without defects," Sci.
- age in oxygen dencient phases of 110₂: Delect Physics without delects, Sci. Rep. 6, 28871 (2016).
 ¹⁵²J. P. Allen and G. W. Watson, "Occupation matrix control of d- and f-electron localisations using DFT + U," Phys. Chem. Chem. Phys. 16, 21016 (2014).
 ¹⁵³G. F. Koster and J. C. Slater, "Simplified impurity calculation," Phys. Rev. 96, 1095 (1975).
- 1208 (1954). 154