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SUMMARY

We present a new approach based on coupling the extended finite element method (XFEM) and level
sets to study surface and interface effects on the mechanical behavior of nanostructures. The coupled
XFEM-level set approach enables a continuum solution to nanomechanical boundary value problems in
which discontinuities in both strain and displacement due to surfaces and interfaces are easily handled,
while simultaneously accounting for critical nanoscale surface effects, including surface energy, stress,
elasticity and interface decohesion. We validate the proposed approach by studying the surface-stress-
driven relaxation of homogeneous and bi-layer nanoplates as well as the contribution from the surface
elasticity to the effective stiffness of nanobeams. For each case, we compare the numerical results with
new analytical solutions that we have derived for these simple problems; for the problem involving the
surface-stress-driven relaxation of a homogeneous nanoplate, we further validate the proposed approach
by comparing the results with those obtained from both fully atomistic simulations and previous multiscale
calculations based upon the surface Cauchy–Born model. These numerical results show that the proposed
method can be used to gain critical insights into how surface effects impact the mechanical behavior
and properties of homogeneous and composite nanobeams under generalized mechanical deformation.
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INTRODUCTION

The recent progress in nanotechnology has led to the understanding that materials whose
features reside at the nanometer length scales exhibit mechanical behavior and properties that
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Figure 1. General outline of the nano-structure under study.
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Figure 3. (a) Enriched node whose support is cut by the interface (zero level set); (b) enriched nodes and
completely enriched elements for a closed interface; and (c) level set function and cutting plane to define

circular inclusions in a square domain.

where

NI (x)=
⎡
⎣NI (x) 0

0 NI (x)

⎤
⎦ (17)

where the functions NI (x) are finite element shape functions associated with node I, NJ (x) are
the shape functions associated with the nodes of an element that has been cut by the inter-
face (Figure 3(b)) and H (x) and �(x) are enrichment functions with the required discontinuities
(ridge function and Heaviside function, respectively [32, 33]). In Equation (16), n is the total
number of nodes per element, whereas m is the number of enriched nodes (m�n). By definition,
an enriched node belongs to an element that is cut by the interface as depicted in Figure 3. To
define the geometry of interface in a general fashion, we introduce a level set function �(x) such
that the interface is defined by the intersection of that a cutting plane, as depicted in Figure 3(c).
With this description, the sign of � is opposite in two sides of discontinuity. An attractive feature
of using level sets is that the unit normal vector n to the interface is determined by the gradient
of the function �(x) as follows:

n(x)= ∇�(x)

‖∇�(x)‖ (18)

Let us now focus on the Heaviside and ridge functions appearing in (16). Referring to Figure 4,
the Heaviside function makes a jump in displacement (strong discontinuity); in contrast, a ridge
function causes a jump in strain field (weak discontinuity) across the interface that is related
to derivative of displacement. Without going into details, the Heaviside and ridge functions are
defined by (in one dimension):

H (�)=
{

1, �>0

0, �<0
and � j (x)=|�(x)|−|�(x j )| (19)

The finite element equations governing the deformation of nano-composites is now derived by
substituting the displacement approximation ũe from (16) into the weak form given in (14) and
(15). For this, stress, strain, and elasticity matrices are first rewritten in Voigt notation [27].

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 84:1466–1489
DOI: 10.1002/nme





1474



SURFACE EFFECTS ON NANO MATERIALS 1475

External energy

Finally, the finite element approximation of the external energy is only associated with standard
shape functions, and is given by:

�W̃ e
ext =�ueT ·

(∫
�
NeTbd�+

∫
��F

NeTtd�

)
(30)

Final XFEM equation

Using Equations (20), (22), (28), and (30), and the weak form in (14) and (15), the XFEM equation
for one element finally takes the form:

(Ke
b +Ke

d +Ke
s ) ·de = feext −fes (31)

where the nodal displacement de is comprised of contributions from the continuous, weakly
discontinuous, and strongly discontinuous fields:

de = [u ū
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Figure 5. Typical gauss points: (a) normal element; (b) and (c) enriched elements.

continuous across gamma. This method does not require the existence of a strong discontinuity,
but suffers from the fact that it leads to an ill-conditioned global stiffness matrix (due to the small
or vanishing stiffness). The second strategy, which is described in this paper, overcome this issue
by considering a finite material stiffness in the external region, together with the existence of
a displacement discontinuity across the free boundary. The strong discontinuity ensures that the
displacement fields in the two regions are completely independent, and thus that the material in �2
does not influence the solution. This strategy therefore relies on the introduction of both a strong
and weak discontinuity (to describe surface elasticity) on the interface.

In this paper, bilinear four node quadrilateral elements are used. Furthermore, for integrating
purposes, four Gauss points are considered in normal and partially enriched elements. In addition,
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Figure 6. Schematic of a gold nanoplate, and the resulting XFEM discretization.

Figure 7. A comparison of surface-stress-driven compressive axial strain as computed using Equation (40)
and XFEM along the gold nanoplate length.

from Equation (40) and the XFEM simulations match exactly. We note that in Equation (40),
we have neglected the effects of Poisson ratio, surface elastic constants and boundary conditions;
because of this, the Poisson ratio and surface elastic constants have been set to zero in the XFEM
calculations.
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Because w
 t , we can neglect t in the w+ t term in (41) and write as:

F

w
=�t +2� (42)

If E and S1111 are the bulk Young’s modulus and axial surface elastic constant, respectively, we
can write that:

ε1 = �

E
and ε2 = �

S1111
(43)

where ε1 and ε2 are the axial strains in the bulk and surface, respectively. Combining Equations
(42) and (43) and noting that ε1 =ε2 =�L/L , we obtain:

F/w

�L
= Et

L
+ 2S1111

L
= Kb +Ks (44)

where Kb and Ks are the bulk and surface axial stiffness, respectively. From (44), we note that if
material properties for gold as previously shown in Table I are considered, because the bulk Young’s
modulus E is much greater than S1111, we expect that the surface stiffness Ks will be negligible for
large plates, while becoming increasingly important for smaller nanoplates. Furthermore, Equation
(44) demonstrates that the aspect ratio of the plate t/L will have a significant effect on the bulk,
and thus total stiffness of the nanoplate. Figure 9 shows the change in axial stiffness as a function
of the nanoplate length, where the nanoplate aspect ratio t/L was kept constant at 10. As can be
seen in Figure 9, an excellent agreement is found between the theoretical solution in Equation (44)
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Figure 9. Surface effects on the size-dependent axial stiffness of a gold nanoplate with a
constant aspect ratio of 10.

Figure 10. General outline of fixed/free bi-layered nano-beam including both surface and interface effects.

If we define �0
1, �0

2, and �0
12 as the surface energy (force per unit length) on materials 1, 2 and

the interface of materials 1 and 2, respectively, we can calculate the induced moment (M) in the
section that results from the material and surface elastic property differences between materials 1
and 2 as:

M = (�0
1w)(t −x)−(�0

2w)x +(�0
12w)

(
t

2
−x

)
(47)
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Figure 11. (a) Axial strain comparison between XFEM and theory (Equations (49)–(51)) due
to both surface and interface stress for a bi-layered Pt/Ni nanoplate, (b) transverse deflection
comparison along a bi-layered Pt/Ni nanoplate between XFEM and theory (Equation (52)) due

to both surface and interface stress.

Figure 12. Schematic of a fixed–fixed nanobeam bent by an applied force F .

a theoretical solution to compare with the XFEM results. The bending equilibrium of the cross-
section shown in Figure 12 can be written as

∫
A
�x y dA+2

∫
fs

t

2
dz =−M (53)

where �x is the axial stress of the cross-section and fs is the force induced on the beam surface
due to the surface elastic constant S1111; fs = S1111εmax, where εmax is the maximum axial strain
that occurs on the top and bottom surfaces. By applying the standard relationships �x = Eε and

Copyright � 2010 John Wiley & Sons, Ltd.
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ε= (y/ymax)εmax and substituting the result into (53) we find that:

2E

t
εmax

∫
A

y2 dA+S1111twεmax =−M (54)

Knowing that I =∫
y2 dA, where I is section moment of inertia around axis z, one can write:

εmax = −M
2E I

t
+S1111tw

(55)

For the rectangular section shown in Figure 12, I = 1
12wt3; therefore, we can simplify Equa-

tion (55) to:

εmax = −M

wt( 1
6 Et +S1111)

(56)

while for ε we can write:

ε= −2My

wt2( 1
6 Et +S1111)

(57)

If we now consider F and d
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Figure 14. General outline of the plate under study: (a) undeformed and (b) deformed (zero interface
cohesion). Sub-elements close to interface are used for plotting purposes only.
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• The method is able to describe complex material behavior in nano-composites such as plasticity
or damage. It thus presents a useful tool for studying surface and interface effects on the
deformation and fracture of nano-composite structures.

The developed methodology was verified against four numerical examples involving surface-
stress-driven relaxation of a nanoplate and a multi-material bi-layer nanoplate, surface effects on
the axial stiffness of a nanoplate, and surface effects on the bending stiffness of a nanobeam.
In all cases, the XFEM/level set numerical results were in excellent agreement with the derived
analytical solution. Furthermore, validation in the case of the surface-stress-driven relaxation of
the gold nanoplate was performed against benchmark atomistic and multiscale SCB calculations.
Finally, in the last example, a combination of weak and strong discontinuities was used to capture
the interactions between surface decohesion and surface elasticity in a plate with an inclusion. The
influence of surface properties and decohesion on the overall mechanical response of the composite
plate could thus be assessed. Since surface elasticity was only associated with the inclusion, we
observed a size dependence in the overall plate response when a finite cohesion between inclusion
and matrix was considered. However, no size effects were observed when the interface cohesion
vanished.

Future work will focus on incorporating the effects of plasticity and interface decohesion into
the proposed framework [38–40], as well as detailed investigations into how surface effects impact
the mechanical properties of nanomaterials.
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